我國(guó)房地產(chǎn)企業(yè)的財(cái)務(wù)狀況研究
本文選題:房地產(chǎn)企業(yè) 切入點(diǎn):財(cái)務(wù)狀況 出處:《吉林財(cái)經(jīng)大學(xué)》2017年碩士論文
【摘要】:隨著經(jīng)濟(jì)的發(fā)展,我國(guó)房地產(chǎn)行業(yè)發(fā)生了翻天覆地的變化。2006年我國(guó)全社會(huì)住宅總投資19333.05億元,2015年我國(guó)全社會(huì)住宅總投資就達(dá)到了80247.69億元,短短十年時(shí)間,我國(guó)全社會(huì)住宅總投資翻了兩翻之多,這還未考慮我國(guó)商業(yè)地產(chǎn)的投資狀況,所以我國(guó)的房地產(chǎn)行業(yè)一直是政府宏觀調(diào)控的重點(diǎn)。由于我國(guó)房地產(chǎn)行業(yè)起步較晚,經(jīng)營(yíng)管理還不健全,所以需要更多的監(jiān)管。目前對(duì)于房地產(chǎn)行業(yè)的研究主要有兩方面:一是從經(jīng)濟(jì)總量出發(fā)做宏觀研究,二是從企業(yè)財(cái)務(wù)狀況出發(fā)進(jìn)行微觀研究。本文選擇從企業(yè)財(cái)務(wù)狀況的角度出發(fā)結(jié)合房地產(chǎn)業(yè)上市公司的行業(yè)數(shù)據(jù)做綜合性研究。本文寫(xiě)作前期對(duì)企業(yè)財(cái)務(wù)狀況綜合評(píng)價(jià)的相關(guān)文獻(xiàn)做了整理和分析,發(fā)現(xiàn)這些文獻(xiàn)大致分為兩大類;第一類是對(duì)企業(yè)財(cái)務(wù)狀況評(píng)價(jià)方法的研究,第二類是對(duì)財(cái)務(wù)狀況評(píng)價(jià)構(gòu)成要素的研究,本文在此基礎(chǔ)上對(duì)房地產(chǎn)業(yè)的上市公司財(cái)務(wù)狀況做了進(jìn)一步分析。首先,研究了企業(yè)財(cái)務(wù)狀況方面的理論知識(shí),分別從償債能力、營(yíng)運(yùn)能力、盈利能力、成長(zhǎng)能力和現(xiàn)金流量狀況這五個(gè)方面做了理論上的剖析,進(jìn)一步引入了利益相關(guān)者理論和委托代理理論。利益相關(guān)者理論界定了我們做財(cái)務(wù)狀況分析所服務(wù)的對(duì)象,委托代理理論則是我們財(cái)務(wù)狀況分析的出發(fā)點(diǎn)。然后,通過(guò)比對(duì)各種財(cái)務(wù)分析方法的優(yōu)劣,慎重選擇了熵權(quán)法和灰色關(guān)聯(lián)分析法。主要做法是首先確定指標(biāo)體系,采用熵權(quán)法為所選取的指標(biāo)進(jìn)行賦權(quán),在此基礎(chǔ)上用灰色關(guān)聯(lián)分析確定各個(gè)公司相對(duì)于我們選定的標(biāo)準(zhǔn)公司的關(guān)聯(lián)度,最后,構(gòu)建基于熵權(quán)法和灰色關(guān)聯(lián)分析相結(jié)合的模型。接下來(lái),我們將熵權(quán)法和灰色關(guān)聯(lián)分析的綜合模型應(yīng)用于我國(guó)21家房地產(chǎn)企業(yè)的財(cái)務(wù)數(shù)據(jù),分別從微觀和宏觀兩個(gè)角度進(jìn)行了實(shí)證分析,即先從五個(gè)財(cái)務(wù)方面進(jìn)行了獨(dú)立研究,得到了相應(yīng)的結(jié)論,進(jìn)一步我們又將所有的財(cái)務(wù)方面作為一個(gè)整體去考察整個(gè)行業(yè)的財(cái)務(wù)狀況,并且對(duì)企業(yè)和行業(yè)狀況進(jìn)行了對(duì)比分析。研究結(jié)果表明:我國(guó)房地產(chǎn)企業(yè)財(cái)務(wù)狀況中,營(yíng)運(yùn)能力、成長(zhǎng)能力和償債能力所占的權(quán)重比較大,其中營(yíng)運(yùn)能力對(duì)公司財(cái)務(wù)狀況影響最大;房地產(chǎn)企業(yè)目前整體償債能力較低。所以企業(yè)自身要提高經(jīng)營(yíng)管理能力、增強(qiáng)綜合財(cái)務(wù)能力;政府及相關(guān)監(jiān)管部門應(yīng)出臺(tái)相應(yīng)政策嚴(yán)格監(jiān)督;建議由第三方構(gòu)建企業(yè)財(cái)務(wù)綜合評(píng)價(jià)體系并及時(shí)通報(bào)各項(xiàng)指標(biāo)。
[Abstract]:With the development of economy, the real estate industry of our country has undergone earth-shaking changes. In 2006, the total investment in China's entire social housing industry reached 1.933305 trillion yuan, and in 2015, the total investment of the whole social housing industry reached 8.024769 trillion yuan, a short period of 10 years. The total investment of housing in the whole society of our country has increased by two times, which has not considered the investment status of commercial real estate in our country, so the real estate industry in our country has always been the focus of the government's macro-control. Because the real estate industry of our country started relatively late, Management is not perfect, so more supervision is needed. At present, there are two main aspects in the study of the real estate industry: one is to do macro research from the point of view of the total economic volume. The second is to conduct microcosmic research on the financial situation of enterprises. This paper chooses to combine the industry data of listed companies in real estate industry from the angle of financial situation of enterprises. In the early stage of this paper, it synthesizes the financial situation of enterprises. The relevant documents of the joint evaluation have been collated and analyzed. It is found that these documents can be divided into two categories: the first is the research on the evaluation methods of the financial situation of enterprises, and the second is the study on the constituent elements of the evaluation of the financial situation. On this basis, this paper makes a further analysis on the financial situation of listed companies in real estate industry. Firstly, the paper studies the theoretical knowledge of the financial situation of enterprises, including solvency, operating capacity, profitability, etc. The growth ability and cash flow status are analyzed theoretically, and the stakeholder theory and principal-agent theory are introduced. The principal-agent theory is the starting point of our financial situation analysis. Then, by comparing the advantages and disadvantages of various financial analysis methods, we carefully select the entropy weight method and the grey relational analysis method. The entropy weight method is used to weight the selected index. On this basis, grey correlation analysis is used to determine the correlation degree of each company relative to the standard company selected by us. Finally, A model based on entropy weight method and grey correlation analysis is built. Then, we apply the entropy weight method and grey correlation analysis model to the financial data of 21 real estate enterprises in China. From the micro and macro perspectives of empirical analysis, that is, from the five financial aspects of independent research, the corresponding conclusions, Furthermore, we take all the financial aspects as a whole to investigate the financial situation of the whole industry, and make a comparative analysis of the financial situation of enterprises and industries. The results show that: in the financial situation of real estate enterprises in China, the operating capacity, The weight of growth ability and debt paying ability is relatively large, among which the operation ability has the biggest influence on the financial condition of the company; the real estate enterprise has low overall solvency at present, so the enterprise should improve its management ability and strengthen the comprehensive financial ability. The government and the relevant regulatory departments should issue the corresponding policies to strictly supervise and suggest that the third party should set up a comprehensive evaluation system of enterprise finance and notify the indicators in time.
【學(xué)位授予單位】:吉林財(cái)經(jīng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F299.233.42
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張鵬;劉勇波;李明;;基于C&R樹(shù)的上市公司財(cái)務(wù)危機(jī)預(yù)警研究[J];會(huì)計(jì)之友;2015年04期
2 陳和平;馬芳;;企業(yè)集團(tuán)財(cái)務(wù)危機(jī)預(yù)警研究——嵌入利益相關(guān)者行為[J];財(cái)會(huì)通訊;2014年31期
3 李云宏;夏玲;紀(jì)璐璐;;財(cái)務(wù)預(yù)警模型研究綜述[J];財(cái)會(huì)通訊;2014年31期
4 李姣姣;干勝道;;西部五大民族自治區(qū)上市公司財(cái)務(wù)質(zhì)量分析[J];貴州民族研究;2014年10期
5 方永恒;劉楠;周越;;基于模糊綜合評(píng)判法的裝備制造業(yè)集群風(fēng)險(xiǎn)研究[J];財(cái)會(huì)通訊;2014年29期
6 黃志敏;;基于行業(yè)特征的旅游上市公司財(cái)務(wù)危機(jī)預(yù)警分析[J];財(cái)會(huì)通訊;2014年29期
7 張坤;丁玉芳;胡敏杰;;基于數(shù)據(jù)包絡(luò)分析:決策樹(shù)的企業(yè)財(cái)務(wù)評(píng)價(jià)與預(yù)警——以西部四省上市企業(yè)為例[J];財(cái)務(wù)與金融;2014年03期
8 劉思峰;蔡華;楊英杰;曹穎;;灰色關(guān)聯(lián)分析模型研究進(jìn)展[J];系統(tǒng)工程理論與實(shí)踐;2013年08期
9 邵清芳;;基于層次分析法的企業(yè)財(cái)務(wù)狀況綜合評(píng)價(jià)[J];財(cái)會(huì)通訊;2010年26期
10 吳靜;吳曉燕;陳永興;滕江川;;基于改進(jìn)灰色關(guān)聯(lián)分析的仿真模型驗(yàn)證方法[J];系統(tǒng)工程與電子技術(shù);2010年08期
相關(guān)博士學(xué)位論文 前1條
1 張亞杰;我國(guó)制造業(yè)上市公司財(cái)務(wù)狀況評(píng)價(jià)及預(yù)測(cè)研究[D];中國(guó)礦業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前6條
1 張坤;基于數(shù)據(jù)包絡(luò)分析的西北地區(qū)上市公司財(cái)務(wù)狀況評(píng)價(jià)與預(yù)警模型研究[D];西北民族大學(xué);2015年
2 張曉東;基于神經(jīng)網(wǎng)絡(luò)的上市公司財(cái)務(wù)危機(jī)預(yù)警研究[D];吉林大學(xué);2013年
3 陳能佳;基于DEA-DA模型的財(cái)務(wù)危機(jī)預(yù)測(cè)研究[D];重慶大學(xué);2011年
4 孫自來(lái);基于IE-GRAP組合的上市公司財(cái)務(wù)狀況評(píng)價(jià)模型研究[D];河北工程大學(xué);2010年
5 夏天;企業(yè)財(cái)務(wù)狀況綜合評(píng)價(jià)研究與應(yīng)用[D];遼寧師范大學(xué);2009年
6 曹明霞;灰色關(guān)聯(lián)分析模型及其應(yīng)用的研究[D];南京航空航天大學(xué);2007年
,本文編號(hào):1654914
本文鏈接:http://sikaile.net/jingjifazhanlunwen/1654914.html