初三學(xué)生幾何思維水平的調(diào)查研究
[Abstract]:Mathematics is the gymnastics of thinking, and geometry, as an important part of mathematics, plays an irreplaceable role in the cultivation and development of mathematical thinking. In recent years, due to the reform of mathematics, the education department has made drastic changes to the geometry content of junior high school, and deleted the complicated and difficult geometric content, but the examination of the students' geometric learning results has not been lax. The level of geometric thinking has a great impact on the geometry learning results, so it is worth our investigation and research on how the students learn geometry and what level the junior middle school students' geometric thinking is in after the curriculum reform. According to the research content and research methods, the article is divided into five parts, as follows: the first chapter is the introduction, mainly introduces the background of the topic and the significance of the research, content and methods, as well as the literature review at home and abroad. Chapter 2 is the theoretical study of geometric thinking level. Chapter 3 is the design and analysis of the investigation. The fourth chapter is according to the investigation result puts forward the teaching suggestion pertinently. This study selected students who had completed the whole junior high school geometry course. The questionnaire used the classic Van Hill geometric thinking test paper, which tested the students' level of geometric thinking, and described the level of analysis from the level of intuitionism. Abstract relevance level, formal reasoning level and tightness level are tested. The results are as follows: (1) the number of students in level 1 and level 2 is small. Less than 20% of the total number. (2) the thinking level of junior high school students is mainly concentrated at level 3, which means that most students have certain reasoning ability, can form abstract definitions, and can distinguish the necessary conditions and sufficient conditions of concepts. Can understand and even do some logical reasoning, can establish the relationship between graphics and the nature of graphics, can deduce non-formal inference, understand the elements of constructing graphics, Can further explore the inherent properties of the graph and its inclusion. (3) We can see from the statistical table, Only a small number of students have reached level 4, which means that most students do not have a high level of reasoning. (4) 240 students and the data from the two charts. Nearly 80% of the students in our country have the level of geometric thinking above level 2, only less than 20% of the students have the level of geometric thinking below level 2, and the students whose level of geometric thinking is below level 2 have only simple reasoning ability. The nature of various graphics is not well understood. According to the results of Usiskin's test of American students at the University of Chicago, 40% of the 2900 students who have completed junior high school geometry study still have a level of geometric thinking below 2. It can be seen that the level of geometric thinking of junior high school students in our country is higher than that of the United States, which also shows that school education can promote the students' geometric thinking. Finally, based on the test results and interviews with some teachers and students, the author puts forward some suggestions from three aspects of teaching materials, teachers and students, hoping to be helpful to students' geometric learning, especially geometric reasoning ability.
【學(xué)位授予單位】:湖南師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:G633.6
【相似文獻】
相關(guān)期刊論文 前10條
1 朱曉劍;;漫談學(xué)生思維水平與教學(xué)問題設(shè)計的適宜性——《萬年牢》一課教學(xué)有感[J];小學(xué)時代(教師);2012年02期
2 鄭安全;;成就數(shù)學(xué)精彩課堂,提高學(xué)生思維水平[J];考試周刊;2012年84期
3 黃興豐;顧圓圓;顧婷;龔流芳;凌怡春;朱夢娜;;7~9年級學(xué)生幾何思維水平的發(fā)展——來自蘇南C市的調(diào)查[J];數(shù)學(xué)通報;2013年06期
4 李松文;;不斷提高學(xué)生的數(shù)學(xué)思維水平[J];中國考試;2003年02期
5 門樹慧;;提高數(shù)學(xué)教師的幾何思維水平[J];中國教育學(xué)刊;1993年06期
6 張連金;;運用點撥藝術(shù) 提升思維水平[J];吉林教育;2008年19期
7 盛群力,林佩燕;幫助你的孩子成為負責(zé)任的公民 負責(zé)任公民的九種品質(zhì)(下)[J];幼兒教育;2003年16期
8 劉天文;;讓學(xué)生學(xué)會質(zhì)疑[J];湖北教育(時政新聞);2006年02期
9 彭光焰;試卷分析課應(yīng)注重提高學(xué)生的思維水平[J];中學(xué)數(shù)學(xué)教學(xué)參考;2003年06期
10 謝江明;;讓學(xué)生學(xué)會提問的作用與途徑[J];江西教育;2010年Z6期
相關(guān)重要報紙文章 前2條
1 記者 劉凱;提升思維水平 強化推進措施 推動創(chuàng)新發(fā)展轉(zhuǎn)型發(fā)展多元發(fā)展[N];運城日報;2014年
2 十屆全國人大常委及北京市政協(xié)副主席 八屆民建中央副主席 朱相遠;不妨開辟“教育特區(qū)”[N];北京日報;2010年
相關(guān)碩士學(xué)位論文 前10條
1 劉小翠;初三學(xué)生幾何思維水平的調(diào)查研究[D];湖南師范大學(xué);2015年
2 祁明衡;范希爾理論下的初中生幾何思維水平現(xiàn)狀研究[D];首都師范大學(xué);2013年
3 陶磊;高中生初等幾何變換思維水平研究[D];華東師范大學(xué);2013年
4 李學(xué)梅;數(shù)學(xué)思維水平評測系統(tǒng)研究[D];河北師范大學(xué);2005年
5 倪華英;初中學(xué)生化學(xué)實驗思維水平差異的研究[D];華東師范大學(xué);2011年
6 王遠帆;基于Van Hiele理論的初中幾何有效教學(xué)研究[D];廣州大學(xué);2012年
7 盧英;初中生幾何思維水平的發(fā)展研究[D];西南大學(xué);2014年
8 蒲秀琴;高二學(xué)生統(tǒng)計思維水平現(xiàn)狀的調(diào)查研究[D];西南大學(xué);2014年
9 王娟玲;初中數(shù)學(xué)空間與圖形的教與學(xué)研究[D];揚州大學(xué);2011年
10 丁景輝;七年級學(xué)生圖形運動常用幾何變換的Van Hiele思維水平現(xiàn)狀研究[D];上海師范大學(xué);2015年
,本文編號:2235556
本文鏈接:http://sikaile.net/jiaoyulunwen/chuzhongjiaoyu/2235556.html