通信業(yè)客服熱線文本主題識(shí)別與演化研究
[Abstract]:Customer service hotline (customer service hotline for short) is an important channel for enterprises to get users' voice in time. For a long time, due to the limitation of technical means, customer service hotline data analysis is only aimed at structured data such as traffic, user satisfaction, etc., but it is not deep for unstructured data mining of voice transliteration which contains potential value. With the explosive growth of customer service hotline traffic and the expansion of the category and scope of user complaints, how to quickly identify complaint topics from mass hotline text data and study the emotional evolution trend of users' complaints. Customer service personnel become an important practical problem to be solved. Customer service hotline text mining belongs to the research category of opinion mining. Most of the existing opinion mining objects are mainly Internet text data, but the research on customer service hotline text mining in enterprises is still rare. The research in this paper is of great theoretical significance for expanding the research scope of opinion mining and verifying the applicability of relevant theories and methods. Based on the theory and method of opinion mining and using R language as programming tool, this paper makes a deep semantic and emotional analysis on the text information of a customer service hotline from September 2013 to September 2014. The automatic identification of hot line text topic and the prediction of emotional trend are realized. Specifically, at the level of semantic analysis, using the structural topic Modeling (STM) algorithm, more than 700,000 text records are automatically classified into 20 topics. After designing text affective polarity intensity algorithm and summarizing the distribution characteristics of hot-line text topic content / affective tendency, using time series autoregressive analysis method to predict the tendency of emotional tendency of 20 themes. This paper summarizes the characteristics of emotional evolution of different types of hot wire text. Through the above research, firstly, we construct a framework of opinion mining analysis suitable for the text situation of customer service hotline in the communication industry. Secondly, we verify the structured topic modeling algorithm, respectively. The applicability of text affective polarity intensity algorithm and text subject time series autoregressive prediction method based on affective polarity in the field of customer service hotline text semantic mining and emotional mining. On the practical level, the developed program has realized the automatic identification and classification of the customer service hotline text topic, and the prediction of the trend of emotional tendency evolution of the text theme, which has expanded the new thinking of the operator customer service department based on the hot line text data decision-making. Future research can be improved in terms of dimension diversity and quasi-real-time analysis: on the one hand, consider adding other "metadata" of hotline work order, such as the complainant, complaint location, problem level and other factors into the thematic model. On the other hand, the realization of R single program is combined with distributed systems such as Spark to improve the quasi-real-time performance of analysis.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.1;F626
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊海霞;吳維芳;孫含林;;基于STM分析旅行者對(duì)不同檔次酒店的偏好差異[J];現(xiàn)代圖書情報(bào)技術(shù);2016年09期
2 梁昕露;李美娟;;電信業(yè)投訴分類方法及其應(yīng)用研究[J];中國管理科學(xué);2015年S1期
3 王博;劉盛博;丁X;劉則淵;;基于LDA主題模型的專利內(nèi)容分析方法[J];科研管理;2015年03期
4 史偉;王洪偉;何紹義;;基于微博情感分析的電影票房預(yù)測(cè)研究[J];華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期
5 蔣翠清;梁坤;丁勇;劉士喜;劉堯;;基于社會(huì)媒體的股票行為預(yù)測(cè)[J];中國管理科學(xué);2015年01期
6 周詠梅;陽愛民;楊佳能;;一種新聞評(píng)論情感詞典的構(gòu)建方法[J];計(jì)算機(jī)科學(xué);2014年08期
7 邸亮;杜永萍;;LDA模型在微博用戶推薦中的應(yīng)用[J];計(jì)算機(jī)工程;2014年05期
8 胡吉明;陳果;;基于動(dòng)態(tài)LDA主題模型的內(nèi)容主題挖掘與演化[J];圖書情報(bào)工作;2014年02期
9 王文文;周澍民;;社會(huì)化媒體對(duì)電影票房的預(yù)測(cè)價(jià)值研究[J];新聞傳播;2013年12期
10 史慶偉;李艷妮;郭朋亮;;科技文獻(xiàn)中作者研究興趣動(dòng)態(tài)發(fā)現(xiàn)[J];計(jì)算機(jī)應(yīng)用;2013年11期
相關(guān)碩士學(xué)位論文 前6條
1 董文;基于LDA和Word2Vec的推薦算法研究[D];北京郵電大學(xué);2015年
2 褚衛(wèi)艷;基于投訴歷史數(shù)據(jù)的分析和預(yù)測(cè)系統(tǒng)設(shè)計(jì)[D];北京郵電大學(xué);2013年
3 董婧靈;基于LDA模型的文本聚類研究[D];華中師范大學(xué);2012年
4 彭柳艷;中文網(wǎng)絡(luò)產(chǎn)品評(píng)論的特征抽取及觀點(diǎn)分類研究[D];武漢紡織大學(xué);2011年
5 嚴(yán)孫榮;中文產(chǎn)品評(píng)論的意見挖掘研究[D];北京交通大學(xué);2010年
6 張巧;基于用戶評(píng)論的社會(huì)化媒體新聞推薦系統(tǒng)研究[D];西南財(cái)經(jīng)大學(xué);2010年
,本文編號(hào):2134103
本文鏈接:http://sikaile.net/guanlilunwen/sjfx/2134103.html