電信業(yè)客戶細(xì)分研究
本文選題:電信業(yè) + 特征分析 ; 參考:《浙江工商大學(xué)》2017年碩士論文
【摘要】:當(dāng)前,電信業(yè)的競(jìng)爭(zhēng)變得越來(lái)越激烈,而且隨著智能手機(jī)和互聯(lián)網(wǎng)應(yīng)用的普及,一些網(wǎng)絡(luò)聊天工具像微信、QQ這類通訊軟件對(duì)電信業(yè)的傳統(tǒng)業(yè)務(wù)如短信業(yè)務(wù)和語(yǔ)音業(yè)務(wù)帶來(lái)了一定的影響,因此,進(jìn)行客戶細(xì)分,識(shí)別有價(jià)值的潛在客戶變得尤為重要。本文拓寬了以單一指標(biāo)如客戶價(jià)值來(lái)進(jìn)行客戶細(xì)分的指標(biāo)體系,結(jié)合互聯(lián)網(wǎng)的深入應(yīng)用給企業(yè)和客戶帶來(lái)的變化,最終確立了一套貼合實(shí)際的指標(biāo)體系。在確立客戶細(xì)分指標(biāo)體系時(shí),本文將數(shù)據(jù)挖掘的思想融入其中。首先基于可獲得的大量原始數(shù)據(jù),對(duì)其進(jìn)行數(shù)據(jù)預(yù)處理,再結(jié)合電信業(yè)的行業(yè)特征確立了上網(wǎng)客戶和非上網(wǎng)客戶的細(xì)分指標(biāo)體系。對(duì)于非上網(wǎng)客戶的指標(biāo)體系主要包括通話、消費(fèi)等客戶的傳統(tǒng)特征,而對(duì)于上網(wǎng)客戶,則主要將客戶的上網(wǎng)行為如流量的使用、對(duì)APP的瀏覽行為納入指標(biāo)體系。此外,本文從多個(gè)角度比較全面的對(duì)電信業(yè)的客戶特征進(jìn)行了分析。在分析過(guò)程中,將上網(wǎng)客戶和非上網(wǎng)客戶分開,分別進(jìn)行特征分析。不僅包括傳統(tǒng)的統(tǒng)計(jì)特征,如年齡、性別、套餐、終端、通話行為等,還創(chuàng)新性的從多個(gè)方面,對(duì)上網(wǎng)客戶的APP使用行為進(jìn)行了分析,并將結(jié)果進(jìn)行了可視化的展示。在模型改進(jìn)方面,為了克服Kohonen SOM算法和K-Means算法的缺點(diǎn),本文將KohonenSOM算法和K-Means算法進(jìn)行了結(jié)合,創(chuàng)建了 Kohonen SOM+K-Means聚類分析模型。Kohonen SOM首先進(jìn)行一次初始聚類,確定K值的個(gè)數(shù),將其結(jié)果作為K-Means聚類的初始輸入,最終將上網(wǎng)客戶細(xì)分成了"普通人"、"社交王"、"閱讀迷"、"生活控'"和"購(gòu)物狂" 5類,將非上網(wǎng)客戶細(xì)分成了 6類,分別是:"不活躍客戶群"、"長(zhǎng)途夜間活躍客戶群"、"低端主動(dòng)客戶群"、"高語(yǔ)音親情網(wǎng)內(nèi)客戶群"、"較高消費(fèi)本地客戶群"和"高消費(fèi)漫游客戶群'"。根據(jù)不同客戶群的客戶特征,提出了針對(duì)該電信運(yùn)營(yíng)公司精準(zhǔn)營(yíng)銷的策略及建議。本文還基于聚類結(jié)果篩選出的高價(jià)值客戶對(duì)客戶的APP使用利用關(guān)聯(lián)挖掘進(jìn)行了拓展研究。通過(guò)關(guān)聯(lián)挖掘并結(jié)合電信業(yè)業(yè)務(wù)規(guī)則篩選了 101條關(guān)聯(lián)規(guī)則,對(duì)客戶的APP使用進(jìn)行了關(guān)聯(lián)推薦。文章最后,對(duì)全文的主要工作進(jìn)行了總結(jié),并結(jié)合本文存在的不足,對(duì)后續(xù)的研究進(jìn)行了展望。
[Abstract]:At present, the competition in the telecommunications industry is becoming more and more fierce, and with the popularity of smart phones and Internet applications, Some network chat tools such as WeChat QQ and other communication software have a certain impact on the traditional business of telecommunications such as SMS and voice services so it is particularly important to segment customers and identify potential customers of value. This paper broadens the index system of customer segmentation with a single index such as customer value, and finally establishes a set of index system suitable to the actual situation by combining the changes brought to enterprises and customers by the deep application of the Internet. In establishing the index system of customer segmentation, this paper integrates the idea of data mining into it. Firstly, based on a large number of raw data available, the paper preprocesses the data, and then establishes the subdivision index system of Internet customers and non-online customers according to the industry characteristics of telecommunications industry. For non-online customers, the index system mainly includes the traditional characteristics of customers, such as telephone, consumption and so on, while for online customers, it mainly includes the usage of customers' online behavior such as traffic, and the browsing behavior of app into the index system. In addition, this paper analyzes the customer characteristics of telecom industry from a variety of angles. In the process of analysis, the online customer and the non-online customer are separated, and the characteristics are analyzed separately. It not only includes the traditional statistical characteristics, such as age, gender, package, terminal, telephone behavior, etc., but also analyzes the application behavior of Internet customers from many aspects, and visualizes the results. In order to overcome the shortcomings of Kohonen SOM algorithm and K-Means algorithm, this paper combines Kohonen SOM algorithm with K-Means algorithm, and establishes Kohonen SOM K-Means clustering analysis model. Kohonen SOM clustering model. Using the results as the initial input of K-Means clustering, the online customers were subdivided into five categories: "ordinary person", "Social King", "Reading fan", "Life Control" and "shopaholic". They are: "inactive customer group", "long distance nocturnal active customer group", "low end active customer group", "high voice affinity network customer group", "higher consumption local customer group" and "high consumption roaming customer group". According to the customer characteristics of different customer groups, the strategies and suggestions for precision marketing of the telecom operation company are put forward. In addition, based on the clustering results, the application mining of high value customers is extended. Through association mining and combining with telecom business rules, 101 association rules are screened, and the application of application is recommended. Finally, the main work of this paper is summarized, and the future research is prospected.
【學(xué)位授予單位】:浙江工商大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F626;F274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏瑾;;基于客戶細(xì)分的電信聚類市場(chǎng)營(yíng)銷策略研究[J];中國(guó)市場(chǎng);2016年31期
2 連漪;楊碩;;基于忠誠(chéng)度的客戶價(jià)值細(xì)分模型構(gòu)建及其應(yīng)用[J];商業(yè)經(jīng)濟(jì)研究;2016年14期
3 林勤;薛云;楊柏高;;基于變異系數(shù)的雙聚類算法及其在電信客戶細(xì)分的應(yīng)用研究[J];計(jì)算機(jī)應(yīng)用與軟件;2016年02期
4 王虹;孫紅;;基于混合聚類算法的客戶細(xì)分策略研究[J];電子科技;2016年01期
5 胡曉雪;趙嵩正;吳楠;;面向分類屬性數(shù)據(jù)的一種改進(jìn)相異性度量及其在客戶細(xì)分中的應(yīng)用[J];計(jì)算機(jī)應(yīng)用研究;2016年02期
6 趙萌;齊佳音;;基于購(gòu)買行為RFM及評(píng)論行為RFMP模型的客戶終身價(jià)值研究[J];統(tǒng)計(jì)與信息論壇;2014年09期
7 蔡淑琴;馬玉濤;王瑞;;在線口碑傳播的意見領(lǐng)袖識(shí)別方法研究[J];中國(guó)管理科學(xué);2013年02期
8 鄧曉懿;金淳;j口良之;韓慶平;;移動(dòng)商務(wù)中面向客戶細(xì)分的KSP混合聚類算法[J];管理科學(xué);2011年04期
9 瞿小寧;;K均值聚類算法在商業(yè)銀行客戶分類中的應(yīng)用[J];計(jì)算機(jī)仿真;2011年06期
10 蔣國(guó)瑞;劉沛;黃梯云;;一種基于AHP方法的客戶價(jià)值細(xì)分研究[J];計(jì)算機(jī)工程與應(yīng)用;2007年08期
相關(guān)碩士學(xué)位論文 前5條
1 盧海明;電力客戶細(xì)分及增值服務(wù)系統(tǒng)研究[D];廣東工業(yè)大學(xué);2016年
2 張平;電子商務(wù)環(huán)境下客戶分類應(yīng)用研究[D];蘭州交通大學(xué);2012年
3 朱幸燕;基于消費(fèi)行為認(rèn)知的電信企業(yè)客戶細(xì)分方法研究[D];華南理工大學(xué);2011年
4 計(jì)海斌;基于改進(jìn)RFM模型的應(yīng)用研究[D];吉林大學(xué);2010年
5 鄧曉梅;基于數(shù)據(jù)挖掘的電信客戶細(xì)分模型研究[D];大連理工大學(xué);2006年
,本文編號(hào):2020498
本文鏈接:http://sikaile.net/guanlilunwen/sjfx/2020498.html