微博用戶粉絲演化模型的構(gòu)建與實證
本文選題:微博 切入點:用戶粉絲 出處:《河北大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:2009年新浪微博的出現(xiàn),拉開了微博在國內(nèi)的發(fā)展序幕。微博作為一個便捷的交流工具,隨著時間的推移逐漸得到了國內(nèi)網(wǎng)民的關(guān)注與喜愛。微博的蓬勃發(fā)展也引起了眾多學(xué)者的研究興趣,他們從各個方面對微博展開了深入的研究,其研究成果為人們更透徹地了解微博提供了理論基礎(chǔ)。但是,對于微博中用戶粉絲的變化情況,卻很少有學(xué)者進(jìn)行探究。然而,企業(yè)進(jìn)行微博營銷時所考慮的主要因素就是粉絲數(shù),因此,筆者以新浪微博為例探索了用戶粉絲的變化規(guī)律,希望成為企業(yè)微博營銷的參考依據(jù)。 為了縱向研究用戶粉絲的變化,本文將網(wǎng)絡(luò)建模和網(wǎng)絡(luò)演化方法引入到微博領(lǐng)域。首先,,重點總結(jié)了國內(nèi)外學(xué)者對無標(biāo)度網(wǎng)絡(luò)模型(BA模型)的擴(kuò)展性研究,并回顧了復(fù)雜網(wǎng)絡(luò)的相關(guān)理論。接下來用樹狀圖展示了新浪微博中的用戶分類,為確定用戶粉絲的度分布類型奠定基礎(chǔ)。然后將新浪微博不同群體中的用戶粉絲數(shù)輸入Excel中,繪制散點圖,得出用戶粉絲的度分布類型——被截斷的冪律型度分布。 以度分布類型為依據(jù),筆者選擇BA模型為基本模型,又考慮到微博用戶粉絲變化的實際影響因素,所以利用吸引力機(jī)制對基本模型進(jìn)行了改進(jìn),從而構(gòu)建了完整的用戶粉絲演化模型。為了驗證模型的正確性,筆者根據(jù)模型的具體算法設(shè)計了仿真流程,并利用Matlab軟件編寫了仿真程序。最后,通過對比仿真結(jié)果與實證數(shù)據(jù),證實了粉絲演化模型的有效性。 不同階段針對不同微博群體,影響用戶粉絲變化的因素不同。進(jìn)入微博初期,用戶粉絲的增加依賴于其本身的吸引力;隨著時間的推移,新用戶逐漸成為老用戶,此時用戶粉絲數(shù)的增加程度也會受用戶原有粉絲與粉絲變化率的影響,因此本文進(jìn)一步分析了個人用戶和組織用戶的屬性以及屬性變化率之間的相關(guān)性。同時,以相關(guān)性為結(jié)論擴(kuò)展了用戶粉絲演化模型。 本文最大的創(chuàng)新之處在于:率先將網(wǎng)絡(luò)建模的方法引入到微博用戶粉絲的分析中,構(gòu)建了符合用戶粉絲變化規(guī)律的演化模型,為今后此領(lǐng)域的研究提供了新角度。
[Abstract]:The emergence of Sina Weibo in 2009 opened the prelude to Weibo's domestic development. Weibo served as a convenient means of communication. With the passage of time, it has gradually attracted the attention and love of the domestic netizens. Weibo's vigorous development has also aroused the research interest of many scholars. They have carried out in-depth research on Weibo from various aspects. The results provide a theoretical basis for people to have a better understanding of Weibo. However, there are few scholars to explore the changes of user fans in Weibo. The main factor of Weibo's marketing is the number of fans. Therefore, the author explores the changing law of users' fans with the example of the Sina Weibo, hoping to become the reference for the enterprise's Weibo marketing. In order to study the changes of users' fans vertically, this paper introduces network modeling and network evolution methods into Weibo field. Firstly, this paper summarizes the extensibility of scale-free network model and BA model by domestic and foreign scholars. Then, the user classification in Sina Weibo is shown with a tree chart, which lays the foundation for determining the distribution type of users' fans. Then, the number of users from different groups of Sina Weibo is input into Excel. Draw scattered plot, get the user fan degree distribution type-truncated power-law degree distribution. On the basis of degree distribution type, the author chooses BA model as the basic model, and considers the actual influence factors of Weibo user fan change, so the basic model is improved by using attraction mechanism. In order to verify the correctness of the model, the author designed the simulation flow according to the specific algorithm of the model, and compiled the simulation program by using Matlab software. Finally, The validity of the fan evolution model is verified by comparing the simulation results with the empirical data. Different stages aim at different groups of Weibo, and the factors that affect the changes of users' fans are different. In the early stage of Weibo, the increase of users' fans depends on their own attractiveness; over time, new users gradually become old users. At this time, the increase of the number of users will also be affected by the change rate of the users' original fans and fans. Therefore, this paper further analyzes the correlation between the attributes of individual users and organizational users and the rate of change of attributes. Based on the conclusion of correlation, the model of user fan evolution is extended. The biggest innovation of this paper is that the method of network modeling is first introduced into the analysis of Weibo users' fans, and an evolutionary model that accords with the law of user fans' change is constructed, which provides a new angle for the future research in this field.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:F224;F49
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 丁楠;潘有能;;h指數(shù)和g指數(shù)評價實證研究——基于CSSCI的統(tǒng)計分析[J];圖書與情報;2008年02期
2 賈秀麗;蔡紹洪;劉浩廣;汪紅;張芙蓉;;無標(biāo)度網(wǎng)絡(luò)BA模型的物理內(nèi)涵及其改進(jìn)模型的比較[J];貴州大學(xué)學(xué)報(自然科學(xué)版);2007年06期
3 謝逢潔;崔文田;王樸;;引入度傳遞性的社會增長網(wǎng)絡(luò)模型[J];管理學(xué)報;2010年07期
4 陶少華;楊春;李慧娜;張勇;;基于節(jié)點吸引力的復(fù)雜網(wǎng)絡(luò)演化模型研究[J];計算機(jī)工程;2009年01期
5 姚長青;喬曉東;張連均;王子祥;;基于NSTL原文索取數(shù)量的空間自相關(guān)性分析[J];情報科學(xué);2009年10期
6 王曉光;;微博客用戶行為特征與關(guān)系特征實證分析——以“新浪微博”為例[J];圖書情報工作;2010年14期
7 孫欽東;孫亞紅;管曉宏;王倩;;動態(tài)短信通信復(fù)雜網(wǎng)絡(luò)演化模型研究[J];西安交通大學(xué)學(xué)報;2009年06期
相關(guān)博士學(xué)位論文 前2條
1 孫雪蓮;加權(quán)網(wǎng)絡(luò)演化機(jī)制及若干動力學(xué)行為研究[D];大連理工大學(xué);2007年
2 韓定定;復(fù)雜網(wǎng)絡(luò)的拓?fù)洹恿W(xué)行為及其實證研究[D];華東師范大學(xué);2008年
相關(guān)碩士學(xué)位論文 前3條
1 秦瓊;復(fù)雜網(wǎng)絡(luò)演化模型的研究[D];大連海事大學(xué);2007年
2 晏先浩;復(fù)雜網(wǎng)絡(luò)的演化模型與穩(wěn)定性研究及其應(yīng)用[D];武漢理工大學(xué);2007年
3 張亮;復(fù)雜網(wǎng)絡(luò)增長模型及社區(qū)結(jié)構(gòu)劃分方法[D];大連理工大學(xué);2008年
本文編號:1648639
本文鏈接:http://sikaile.net/guanlilunwen/sjfx/1648639.html