云服務(wù)資源調(diào)度與市場交易模型研究
本文選題:云服務(wù)市場 切入點:優(yōu)化調(diào)度 出處:《武漢理工大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:隨著信息服務(wù)資源市場的不斷擴(kuò)大和需求信息服務(wù)用戶的的逐日增多,作為信息服務(wù)商已經(jīng)無法承擔(dān)高額的服務(wù)成本,以往傳統(tǒng)的服務(wù)資源市場組織管理方式已經(jīng)無法滿足云服務(wù)市場中用戶多樣化的需求服務(wù)要求,在這樣的背景下促使了“云計算”服務(wù)的出現(xiàn)和大力發(fā)展!霸朴嬎恪弊鳛橐环N新興的信息資源服務(wù)形式,以基礎(chǔ)設(shè)施、平臺開發(fā)和軟件應(yīng)用的方式提供市場服務(wù),把服務(wù)市場的信息資源從本地服務(wù)擴(kuò)展到云服務(wù)市場環(huán)境中,并以快捷的方式提供給用戶使用。云用戶按照自身需求訂購支付適合自己的個性化云服務(wù),通過這種方式可以有效減少管理成本和投資成本。但是要獲取這些服務(wù)的途徑方式對于一些計算機(jī)專業(yè)人員來說,都是件費(fèi)時費(fèi)力的事情,那么對于大多數(shù)普通用戶來說更是件不容易的事情,更不用說服務(wù)質(zhì)量的有效保證。因此,高效優(yōu)化的云服務(wù)市場機(jī)制使得云服務(wù)市場的每一個環(huán)節(jié)都井然有序是一個亟待解決的問題,具有十分重要的現(xiàn)實意義。針對上述問題利用市場經(jīng)濟(jì)優(yōu)化理論、博弈理論、多目標(biāo)優(yōu)化等理論,結(jié)合云服務(wù)市場具體服務(wù)情況等相關(guān)知識和方法來尋求解決途徑。首先從云服務(wù)市場的市場機(jī)制入手,分析了市場競爭機(jī)制、資源調(diào)度機(jī)制、交易機(jī)制、定價機(jī)制。隨后依次研究構(gòu)建了云服務(wù)資源優(yōu)化調(diào)度模型、云服務(wù)資源定價模型、云服務(wù)資源交易模型。主要研究內(nèi)容如下:(1)針對云服務(wù)市場中的資源調(diào)度優(yōu)化問題,通過資源優(yōu)化調(diào)度率選取與其高度相關(guān)的服務(wù)成本、服務(wù)時間、服務(wù)QoS屬性值、用戶的最優(yōu)滿意度,作為調(diào)度優(yōu)化指標(biāo),構(gòu)建了云服務(wù)資源優(yōu)化調(diào)度模型,利用主客觀賦權(quán)法根據(jù)用戶的不同偏好屬性對服務(wù)資源的屬性進(jìn)行賦權(quán),更加科學(xué)貼切的反映用戶意愿和資源調(diào)度的合理性。利用有序效用函數(shù)選取最優(yōu)服務(wù)資源候選集,采用用戶需求任務(wù)—服務(wù)資源—服務(wù)商的編碼方式將任務(wù)、資源和服務(wù)商合理聯(lián)系起來為更好的完成用戶需求任務(wù)提供方法依據(jù)。最后通過模擬實驗分析該模型的有效性。(2)制定云服務(wù)市場的定價模型。分別從以下三個方面著手進(jìn)行:其一,根據(jù)用戶效用最大化條件下,確定服務(wù)市場的合同和按需定價策略,并研究市場完全被壟斷和引入競爭機(jī)制這兩種市場機(jī)制下,此種定價方法的用戶效用變化情況。其二,根據(jù)市場收益最大化,在合同和按需定價的基礎(chǔ)之上確定市場最優(yōu)定價策略。其三,根據(jù)市場的實際使用情況,在用戶使用的某些時段會有大量的閑散資源存在,此時,需要研究制定現(xiàn)貨實例定價策略來對這些閑散資源進(jìn)行合理的利用。此時段的定價也被看做是一種調(diào)整用戶市場服務(wù)使用行為的激勵機(jī)制,從而實現(xiàn)市場均衡和整體市場的高效使用。(3)根據(jù)服務(wù)市場在高峰時段出現(xiàn)的擁擠現(xiàn)象,建立擁擠時段費(fèi)用定價模型,首先根據(jù)優(yōu)先權(quán)和限流費(fèi)用來設(shè)定擁擠費(fèi)用,然后從靜態(tài)和動態(tài)兩個角度去分析此擁擠收費(fèi)在緩解市場壓力方面的合理性,最后根據(jù)信息經(jīng)濟(jì)學(xué)中的博弈論,用戶與用戶之間圍繞利益展開的非合作博弈,以及用戶與云經(jīng)紀(jì)人之間的非合作博弈,并結(jié)合上述優(yōu)先權(quán)和限流收費(fèi)政策,來解決云服務(wù)市場的擁擠現(xiàn)象。(4)針對服務(wù)資源市場的交易問題,本文構(gòu)建了云服務(wù)市場交易體系該體系由云經(jīng)紀(jì)人協(xié)調(diào)整個服務(wù)交易過程,進(jìn)行用戶需求任務(wù)的合理分配和市場資源的供需平衡控制。并提出了面向用戶預(yù)算約束、時間約束以及預(yù)算和時間雙重約束條件下的多實例組合交易決策模型。
[Abstract]:With the development of information service resource market continues to expand and the demand of information service user's daily increase as information service providers have been unable to bear the high cost of service, traditional service resources market organization management has been unable to meet the users of cloud services in the market demand of various service requirements, in this context the emergence of cloud "computing" services and develop. "Cloud computing" as a new form of information service, the infrastructure platform, software development and application way of providing marketing services, expand service market information resources from the local services to the cloud services market environment, and the quickest way available to users. Cloud users according to their own needs for personalized subscription payments cloud services of their own, by this way can effectively reduce management costs and investment costs. But To get the service mode for some computer professionals, is a time-consuming thing, so for most ordinary users, it is not an easy thing, not to guarantee service quality. Therefore, the cloud service efficient market mechanism optimization makes every link of the cloud services market in order is an urgent problem, has very important practical significance. In order to solve the above problems by using market economy optimization theory, game theory, optimization theory, combined with the knowledge and methods of cloud services and other related market specific services to seek solutions. Starting from the market mechanism of cloud services market, market analysis the mechanism of competition, resource scheduling mechanism, trading mechanism, pricing mechanism. Then the research constructs the optimization model of cloud services resources, cloud service resource pricing Model of cloud service resource transaction model. The main contents are as follows: (1) to solve the optimization problem of resource scheduling of cloud services in the market, through the resource optimization scheduling rate selection and service cost, highly relevant Business Hours, QoS attribute values, optimal user satisfaction, as optimization index, construct the optimal scheduling model of cloud the service resources, using subjective and objective weighting method according to different attributes preference attributes of users of the service resources to weight more scientific and appropriate to reflect the rationality of user intention and resource scheduling. Using the ordered utility function to select the optimal resource service candidate set by user needs task service resources - Service providers encoding tasks and resources reasonable link and service providers can provide a theoretical basis for better user needs to complete tasks. Finally, through the simulation and analysis of the effectiveness of the model (2). The development of cloud services market pricing model. Respectively from the following three aspects: first, according to the user's utility maximization under the condition of market, determine the service contract and on-demand pricing strategy, and study the market is completely monopoly and introduce the competition mechanism of the two kinds of market mechanism, change the user utility pricing method secondly, according to the market to maximize profits in the contract, and to determine the optimal pricing strategy according to market demand pricing basis. Thirdly, according to the actual situation of the market, in some time users will have a large number of idle resources, at the same time, the need to develop research spot pricing strategy to these examples of idle resources reasonably the use of incentive mechanism. At this time the price is also seen as a service market to adjust the user behavior, so as to realize the efficient use of market equilibrium and the overall market (3) root. According to the congestion service market appeared in the peak period, a congestion cost pricing model according to the first time, priority and limiting costs to set the congestion cost, and then from two angles of the static and dynamic analysis of the congestion pricing rationality in relieving the pressure of the market, according to the game theory in the information economics theory, all around the interests the non cooperative game between users and between users and cloud broker non cooperative game, and combined with the priority and limiting the charging policy, to solve the congestion phenomenon of cloud services market. (4) aiming at the problem of transaction service resource in the market, this paper constructs the cloud services market transaction system the system consists of cloud broker coordinate the whole process of service transactions, the supply and demand balance control reasonable allocation of user demand tasks and market resources. And put forward the user oriented budget constraint, time A multi instance portfolio decision model under the dual constraints of budgetary and time constraints.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:F49
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 汪定偉;劉旭旺;;基于演化博弈的評標(biāo)管理行為分析[J];系統(tǒng)工程學(xué)報;2014年06期
2 唐啟濤;;基于改進(jìn)的遺傳算法的智能組卷算法研究[J];計算機(jī)技術(shù)與發(fā)展;2014年12期
3 張水平;龐敏;仲偉彪;何迎盛;;基于云環(huán)境下的負(fù)載均衡算法研究[J];微電子學(xué)與計算機(jī);2014年08期
4 趙陽;楊志和;趙風(fēng)景;;基于博弈論的云服務(wù)市場模型研究[J];上海電機(jī)學(xué)院學(xué)報;2013年06期
5 張志強(qiáng);龍蕓;;Google Apps支持下的目標(biāo)驅(qū)動個性化學(xué)習(xí)模式研究[J];軟件導(dǎo)刊;2013年10期
6 林闖;蘇文博;孟坤;劉渠;劉衛(wèi)東;;云計算安全:架構(gòu)、機(jī)制與模型評價[J];計算機(jī)學(xué)報;2013年09期
7 曹樹金;陳憶金;楊濤;;基于用戶需求的圖書館用戶滿意實證研究[J];中國圖書館學(xué)報;2013年05期
8 秦克非;;試論云計算產(chǎn)業(yè)發(fā)展背景下的中國云數(shù)字圖書館建設(shè)[J];科技情報開發(fā)與經(jīng)濟(jì);2013年08期
9 鄧維;劉方明;金海;李丹;;云計算數(shù)據(jù)中心的新能源應(yīng)用:研究現(xiàn)狀與趨勢[J];計算機(jī)學(xué)報;2013年03期
10 周文;井明洋;吳辰康;徐怡秋;馬雯;郭毅可;張武;;中國云計算產(chǎn)業(yè)結(jié)構(gòu)和商業(yè)模式[J];上海大學(xué)學(xué)報(自然科學(xué)版);2013年01期
相關(guān)博士學(xué)位論文 前3條
1 李婭;網(wǎng)絡(luò)演化博弈機(jī)制設(shè)計與應(yīng)用研究[D];西南大學(xué);2014年
2 劉曉茜;云計算數(shù)據(jù)中心結(jié)構(gòu)及其調(diào)度機(jī)制研究[D];中國科學(xué)技術(shù)大學(xué);2011年
3 唐亮貴;基于多Agent的電子商務(wù)市場結(jié)構(gòu)及交易模型研究[D];重慶大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 張曉龍;私有云的云存儲和云運(yùn)算實現(xiàn)[D];北京郵電大學(xué);2014年
2 馬言春;面向云市場的資源管理的研究與實現(xiàn)[D];江蘇科技大學(xué);2012年
3 王波;基于古諾均衡的云資源定價策略研究[D];云南大學(xué);2011年
4 鄭麗君;基于遺傳算法的多目標(biāo)優(yōu)化與決策方法研究[D];國防科學(xué)技術(shù)大學(xué);2003年
,本文編號:1615857
本文鏈接:http://sikaile.net/guanlilunwen/sjfx/1615857.html