天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于修正的KMV模型的制造業(yè)上市公司信用風險實證研究

發(fā)布時間:2018-05-30 22:49

  本文選題:制造業(yè) + 上市公司。 參考:《湘潭大學》2013年碩士論文


【摘要】:我國作為世界上發(fā)展最迅速的發(fā)展中國家,在世界貿(mào)易分工的格局下充分發(fā)揮了勞動力和資源上的比較優(yōu)勢,在全球的經(jīng)濟地位日益強盛,逐步成為世界上的制造業(yè)大國。然而我國制造業(yè)以出口為導向、缺乏核心競爭力、風險抵御能力差的特性,使得該行業(yè)在2008年的金融危機中遭受重創(chuàng)。正確評價制造業(yè)上市公司信用風險,有助于加快該行業(yè)的產(chǎn)業(yè)結構調整和升級。同時,制造業(yè)上市公司作為我國商業(yè)銀行重要的信貸客戶,其信用狀況直接影響著商業(yè)銀行的信貸資產(chǎn)質量,因此對制造業(yè)信用風險進行有效度量也有助于商業(yè)銀行防范信用風險。 以我國商業(yè)銀行的角度度量制造業(yè)上市公司信用風險,立足于我國的現(xiàn)實環(huán)境,結合制造業(yè)上市公司信用風險的特點,通過比較分析四種現(xiàn)代信用風險度量模型得出結論:KMV模型是最適合度量我國制造業(yè)上市公司信用風險的模型。然后,運用KMV模型對我國制造業(yè)上市公司進行實證研究,在調整了KMV模型的兩個參數(shù)——違約點和預期資產(chǎn)增長率后,,對實證效果進行檢驗發(fā)現(xiàn):修正后的KMV模型比未修正的模型能更好地區(qū)分正常公司和違約公司之間的信用風險。最后,應用修正后的KMV模型對我國中證100指數(shù)中12家具有代表性的大型制造業(yè)上市公司的信用風險進行分析,發(fā)現(xiàn)這些制造業(yè)上市公司從2011到2013年三年間的信用狀況都在持續(xù)惡化。 主要完成了三個方面的創(chuàng)新工作:第一,考慮分行業(yè)研究上市公司信用風險,僅以制造業(yè)行業(yè)為研究對象,通過實證探索適合我國制造業(yè)上市公司信用風險研究的違約點。第二,比較三種不同的計算預期資產(chǎn)增長率的方法,確立了歷史平均資產(chǎn)增長率為計算資產(chǎn)增長率的最佳方法。第三,選用中證100指數(shù)中的12家具有代表性的制造業(yè)上市公司作為研究對象,應用修正后的KMV模型分析近三年這些公司的信用風險變化情況,通過實證了解到我國制造業(yè)信用狀況在惡化。
[Abstract]:China, as the most rapidly developing country in the world, has brought into full play the comparative advantages of labor force and resources under the pattern of world trade division, and has gradually become a big manufacturing country in the world because of its increasingly strong economic position in the world. However, China's manufacturing industry is export-oriented, lack of core competitiveness, and poor risk resistance, which made the industry suffered a heavy blow in the financial crisis in 2008. Evaluating the credit risk of listed manufacturing companies is helpful to speed up the adjustment and upgrading of the industry structure. At the same time, as an important credit customer of commercial banks in China, listed manufacturing companies have a direct impact on the credit assets quality of commercial banks. Therefore, effective measurement of manufacturing credit risk is also helpful for commercial banks to guard against credit risk. To measure the credit risk of listed manufacturing companies from the perspective of commercial banks in China, based on the reality of our country, combined with the characteristics of the credit risk of listed manufacturing companies, Through the comparative analysis of four modern credit risk measurement models, it is concluded that the "KMV" model is the most suitable model for measuring the credit risk of listed manufacturing companies in China. Then, we use the KMV model to make an empirical study on the listed manufacturing companies in our country. After adjusting the two parameters of the KMV model, the default point and the expected growth rate of assets, The empirical results show that the modified KMV model can distinguish the credit risk between the normal company and the defaulting company better than the unmodified model. Finally, using the modified KMV model, this paper analyzes the credit risk of the representative large manufacturing listed companies in China's CSI 100 index. These listed manufacturing companies were found to have continued to deteriorate their credit standing between 2011 and 2013. It mainly completes the innovation work in three aspects: first, considering the research of credit risk of listed companies in different industries, only taking the manufacturing industry as the research object, this paper explores the breach points suitable for the study of credit risk of listed companies in manufacturing industry in China. Secondly, by comparing three different methods of calculating the expected growth rate of assets, we establish that the historical average growth rate of assets is the best way to calculate the growth rate of assets. Thirdly, using 12 representative manufacturing listed companies in the CSI 100 index as the research object, using the modified KMV model to analyze the credit risk changes of these companies in the past three years. Through empirical understanding of China's manufacturing credit situation is deteriorating.
【學位授予單位】:湘潭大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:F832.4;F425

【參考文獻】

相關期刊論文 前10條

1 閆海峰;華雯君;;基于KMV模型的中國上市公司信用風險研究[J];產(chǎn)業(yè)經(jīng)濟研究;2009年03期

2 劉迎春;劉霄;;基于GARCH波動模型的KMV信用風險度量研究[J];東北財經(jīng)大學學報;2011年03期

3 翟東升;張娟;曹運發(fā);;KMV模型在上市公司信用風險管理中的應用[J];工業(yè)技術經(jīng)濟;2007年01期

4 梁凌,譚德俊,彭建剛;CreditRisk+模型下商業(yè)銀行經(jīng)濟資本配置研究[J];經(jīng)濟數(shù)學;2005年03期

5 楊永生;周子元;;資產(chǎn)價值增長率在企業(yè)信用風險評估中的應用[J];經(jīng)濟問題探索;2010年07期

6 李峰;姚興伍;;改進的KMV模型在信用風險度量中的應用[J];金融經(jīng)濟;2008年22期

7 李磊寧;張凱;;KMV模型的修正及在我國上市公司信用風險度量中的應用[J];金融縱橫;2007年13期

8 馬若微;;KMV模型運用于中國上市公司財務困境預警的實證檢驗[J];數(shù)理統(tǒng)計與管理;2006年05期

9 王建穩(wěn);梁彥軍;;基于KMV模型的我國上市公司信用風險研究[J];數(shù)學的實踐與認識;2008年10期

10 蔣正權;張能福;;KMV模型的修正及其應用[J];統(tǒng)計與決策;2008年09期

相關博士學位論文 前1條

1 劉迎春;我國商業(yè)銀行信用風險度量和管理研究[D];東北財經(jīng)大學;2011年



本文編號:1957182

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/shengchanguanlilunwen/1957182.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶7f95a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com