聚類挖掘在電信客戶分類中的研究與應(yīng)用
[Abstract]:Customer Relationship Management (CRM) plays an important role in improving the relationship between the customer and the enterprise. The efficient and accurate classification of large customer information is the foundation and important technology for effective customer management. The key point of improving the competitiveness of the telecom enterprise is how to make the data that appear to have no value in the database through the integration of the system, to extract useful data information, and to analyze the research to develop the differentiated and personalized service. Data mining, through data analysis, has found its inside gauge from a large number of raw data law. The process of work is data preparation: data is selected from the relevant database, and the data can be integrated into a collection of data that can be used for data mining; the second is the rule of discovery: the set of data obtained when using the data, and the use of a certain party The method of finding and summarizing the rules between the sets of data. This paper is mainly focused on an important field in data mining technology: the cluster analysis is used to study and analyze and put it into the decision-making of the real enterprise The essence of the clustering mining is to group the objects of the non-entities into a process of the class of objects formed by many similar objects, the main task of which is to classify and gather the similar data collected. In this paper, the author has made a deep and detailed study on the data mining technology, the customer relationship management system and the customer classification model of the telecom industry. The following research is carried out for the customer classification in the customer relationship management system based on the cluster mining. Research work:1. Establish a customer who is in favor of data analysis The establishment of the customer classification model will greatly improve the classification of the telecommunication enterprises to the users, and set the users with a certain consumption habit or the consumption tendency. The customer classification model can set a large number of users with similar features together to form a specific customer category, which can be quantified by the enterprise to analyze a certain user class and formulate a suitable telecommunication system. product and service.2. Start with the original K-means calculation from two aspects In this paper, the initial cluster center is optimized: the better partitioning effect is through the original clustering center It makes the objects in different clusters not similar, but in one cluster The object is similar. At the same time, the paper applies the law of mathematical geometry: the "The length of the two sides of the triangle must be greater than the third edge" to reduce the k-means algorithm the total time complexity can be achieved as much as possible to reduce the number of iterations, increase, The purpose of the mining performance is to compare and find that the optimized algorithm is more than the traditional K-means algorithm. with better performance.3. Determine what is used in the customer classification model Categorical variables and description variables. The difference between a variety of factors is, in itself, a variety. For consumers, there is no single policy at all to correspond to the needs of all customers, and a single product choice is not An excellent strategic choice, and the customer classification is to improve the management level of a large and diversified organization in essence The actual possibility is provided. The customer classification takes the customer's consumption behavior and the customer value as the study variable. The customer's demographic characteristics, reference customer's psychological consumption factors are used as the reference basis, and a set of data based on the data is established. and 4. using the Clementine 7.0 developed by the SPSS, as a development tool, to carry out the test on the customer classification model obtained by the above research through the telecommunication customer data; At the same time, the paper selects the short message high-frequency use group in the cluster mining result group as the analysis object, and analyzes the consumption habit and the consumption tendency. The results show that the work of this paper will improve the customer management in the telecom industry, improve the user's satisfaction, and improve the market competition of the telecom operators.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP311.13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃明,王武龍,梁旭;基于遺傳算法的高效聚類挖掘新算法[J];大連鐵道學(xué)院學(xué)報(bào);2002年04期
2 雷紅艷;鄒漢斌;;限制隱私泄露的隱私保護(hù)聚類算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年07期
3 劉振名;趙可新;劉振亮;;多維數(shù)量關(guān)聯(lián)規(guī)則聚類挖掘研究[J];煤炭技術(shù);2011年06期
4 鄧云桂;石雅迪;曹三省;;互動(dòng)業(yè)務(wù)用戶行為特征聚類挖掘算法研究[J];電視技術(shù);2009年05期
5 李衛(wèi)東,宋威,楊炳儒;利用數(shù)據(jù)挖掘方法分析客戶生涯價(jià)值[J];計(jì)算機(jī)工程與應(yīng)用;2005年06期
6 蘇錦旗;吳慧欣;薛惠鋒;;基于人工魚群算法的聚類挖掘[J];計(jì)算機(jī)仿真;2009年02期
7 茍?jiān)?;聚類分析在圖書館館藏書目中的挖掘與應(yīng)用[J];內(nèi)蒙古科技與經(jīng)濟(jì);2009年13期
8 蘇守寶;郁書好;陳明華;;基于智能計(jì)算的聚類挖掘研究進(jìn)展[J];計(jì)算機(jī)測(cè)量與控制;2006年05期
9 姜華;孟志青;周克江;肖建華;;多粒度時(shí)間下的近似周期挖掘研究[J];計(jì)算機(jī)工程;2010年03期
10 張國(guó)榮;印鑒;;分布式環(huán)境下保持隱私的聚類挖掘算法[J];計(jì)算機(jī)工程與應(yīng)用;2007年18期
相關(guān)會(huì)議論文 前10條
1 郭學(xué)軍;陳曉云;;粗集方法在數(shù)據(jù)挖掘中的應(yīng)用[A];第十六屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集[C];1999年
2 徐慧;;基于Web的文獻(xiàn)數(shù)據(jù)挖掘[A];第十七屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2000年
3 孫迎;;醫(yī)院信息的數(shù)據(jù)挖掘與方法研究[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)醫(yī)學(xué)信息學(xué)術(shù)會(huì)議論文匯編[C];2004年
4 薛曉東;李海玲;;數(shù)據(jù)挖掘的客戶關(guān)系管理應(yīng)用[A];科技、工程與經(jīng)濟(jì)社會(huì)協(xié)調(diào)發(fā)展——河南省第四屆青年學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2004年
5 郭建文;黃燕;印鑒;楊小波;梁兆輝;;建立中風(fēng)病“陰陽(yáng)類證”辨證規(guī)范的數(shù)據(jù)挖掘研究[A];中華醫(yī)學(xué)會(huì)第十三次全國(guó)神經(jīng)病學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2010年
6 薛魯華;張楠;;聚類分析在Web數(shù)據(jù)挖掘中的應(yīng)用[A];北京市第十三次統(tǒng)計(jì)科學(xué)討論會(huì)論文選編[C];2006年
7 朱揚(yáng)勇;黃超;;基于多維模型的交互式數(shù)據(jù)挖掘框架[A];第二十屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2003年
8 陳濤;胡學(xué)鋼;陳秀美;;基于數(shù)據(jù)挖掘的教學(xué)質(zhì)量評(píng)價(jià)體系分析[A];全國(guó)第21屆計(jì)算機(jī)技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議(CACIS·2010)暨全國(guó)第2屆安全關(guān)鍵技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
9 王星;謝邦昌;戴穩(wěn)勝;;數(shù)據(jù)挖掘在保險(xiǎn)業(yè)中的應(yīng)用[A];北京市第十二次統(tǒng)計(jì)科學(xué)討論會(huì)論文選編[C];2003年
10 郭建文;黃燕;印鑒;楊小波;梁兆輝;;建立中風(fēng)病陰陽(yáng)類證辨證規(guī)范的數(shù)據(jù)挖掘研究[A];2010中國(guó)醫(yī)師協(xié)會(huì)中西醫(yī)結(jié)合醫(yī)師大會(huì)摘要集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 李開宇 黃建軍 田長(zhǎng)春;把“數(shù)據(jù)挖掘”作用發(fā)揮出來[N];中國(guó)國(guó)防報(bào);2009年
2 華萊士;“數(shù)據(jù)挖掘”讓銀行贏利更多[N];國(guó)際金融報(bào);2003年
3 記者 晏燕;數(shù)據(jù)挖掘讓決策者告別“拍腦袋”[N];科技日?qǐng)?bào);2006年
4 □中國(guó)電信股份有限公司北京研究院 張舒博 □北京郵電大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院 牛琨;走出數(shù)據(jù)挖掘的誤區(qū)[N];人民郵電;2006年
5 張立明;數(shù)據(jù)挖掘之道[N];網(wǎng)絡(luò)世界;2003年
6 中圣信息技術(shù)有限公司 李輝;數(shù)據(jù)挖掘在CRM中的作用[N];中國(guó)計(jì)算機(jī)報(bào);2001年
7 田紅生;數(shù)據(jù)挖掘在CRM中的應(yīng)用[N];中國(guó)經(jīng)濟(jì)時(shí)報(bào);2002年
8 王廣宇;數(shù)據(jù)挖掘 加速銀行CRM一體化[N];中國(guó)計(jì)算機(jī)報(bào);2004年
9 周蓉蓉;數(shù)據(jù)挖掘需要點(diǎn)想像力[N];計(jì)算機(jī)世界;2004年
10 張舒博;數(shù)據(jù)挖掘 提升品牌的好幫手[N];首都建設(shè)報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 孫麗;工藝知識(shí)管理及其若干關(guān)鍵技術(shù)研究[D];大連交通大學(xué);2005年
2 胡志坤;復(fù)雜有色金屬熔煉過程操作模式智能優(yōu)化方法研究[D];中南大學(xué);2005年
3 劉革平;基于數(shù)據(jù)挖掘的遠(yuǎn)程學(xué)習(xí)評(píng)價(jià)研究[D];西南師范大學(xué);2005年
4 劉寨華;基于臨床數(shù)據(jù)分析的病毒性心肌炎證候演變規(guī)律研究[D];黑龍江中醫(yī)藥大學(xué);2006年
5 王川;基因芯片數(shù)據(jù)管理及數(shù)據(jù)挖掘[D];中國(guó)科學(xué)院研究生院(上海生命科學(xué)研究院);2004年
6 王濤;挖掘序列模式和結(jié)構(gòu)化模式的精簡(jiǎn)集[D];華中科技大學(xué);2006年
7 郭斯羽;動(dòng)態(tài)數(shù)據(jù)中的數(shù)據(jù)挖掘研究[D];浙江大學(xué);2002年
8 李旭升;貝葉斯網(wǎng)絡(luò)分類模型研究及其在信用評(píng)估中的應(yīng)用[D];西南交通大學(xué);2007年
9 劉東升;面向連鎖零售企業(yè)的客戶關(guān)系管理模型(R-CRM)研究[D];浙江工商大學(xué);2008年
10 余紅;網(wǎng)絡(luò)時(shí)政論壇輿論領(lǐng)袖研究[D];華中科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 廖賽恩;養(yǎng)生方數(shù)據(jù)挖掘分析系統(tǒng)的研制[D];湖南中醫(yī)藥大學(xué);2010年
2 李坤然;數(shù)據(jù)挖掘在股市趨勢(shì)預(yù)測(cè)的應(yīng)用研究[D];中南林業(yè)科技大學(xué);2008年
3 鄭宏;數(shù)據(jù)挖掘可視化技術(shù)的研究與實(shí)現(xiàn)[D];西安電子科技大學(xué);2010年
4 杜金剛;數(shù)據(jù)挖掘在電信客戶關(guān)系管理及數(shù)據(jù)業(yè)務(wù)營(yíng)銷中的應(yīng)用[D];北京郵電大學(xué);2010年
5 徐路;基于決策樹的數(shù)據(jù)挖掘算法的研究及其在實(shí)際中的應(yīng)用[D];電子科技大學(xué);2009年
6 梁小鷗;數(shù)據(jù)挖掘在高職教學(xué)管理中的應(yīng)用[D];華南理工大學(xué);2011年
7 王浩;數(shù)據(jù)挖掘在上海市職業(yè)能力考試院招錄考試優(yōu)化管理項(xiàng)目中的運(yùn)用研究[D];華東理工大學(xué);2012年
8 黎衛(wèi)英;數(shù)據(jù)挖掘在中職幼教課程改革中的應(yīng)用[D];福建師范大學(xué);2009年
9 張煜輝;數(shù)據(jù)挖掘和SPC在生產(chǎn)過程質(zhì)量控制中應(yīng)用研究[D];上海交通大學(xué);2009年
10 劉華敏;數(shù)據(jù)挖掘在高職院校學(xué)生成績(jī)分析中的應(yīng)用[D];安徽大學(xué);2011年
本文編號(hào):2439515
本文鏈接:http://sikaile.net/guanlilunwen/kehuguanxiguanli/2439515.html