網(wǎng)絡(luò)游戲客戶管理系統(tǒng)的設(shè)計與實現(xiàn)
發(fā)布時間:2018-03-24 14:44
本文選題:數(shù)據(jù)挖掘 切入點:網(wǎng)絡(luò)游戲 出處:《電子科技大學》2013年碩士論文
【摘要】:當前,計算機網(wǎng)絡(luò)不斷普及,網(wǎng)絡(luò)游戲產(chǎn)品的品種和規(guī)模也越來越大,游戲玩家們可以選擇的游戲種類和游戲公司也越來越多,相對而言就是網(wǎng)絡(luò)游戲公司之間以及不同公司相同種類的網(wǎng)絡(luò)游戲之間的競爭也越來越激烈。這就要求網(wǎng)絡(luò)游戲公司要充分分析網(wǎng)絡(luò)游戲客戶的更多信息,不斷的提高客戶的滿意程度,加深客戶對游戲以及游戲公司的忠誠度。使得網(wǎng)絡(luò)游戲公司能夠占有很大的市場份額,獲取更多的利潤,已經(jīng)成為每個網(wǎng)絡(luò)游戲企業(yè)所面臨的首要問題。由于國內(nèi)的網(wǎng)絡(luò)游戲企業(yè)發(fā)展的時間比較晚,在客戶管理方面與國外的網(wǎng)絡(luò)游戲公司還存在很大的差距。目前,我國的中小型網(wǎng)絡(luò)游戲企業(yè)的客戶管理比較松散,很多公司并沒有科學的制定高級客戶信息系統(tǒng),無法對客戶信息進行有效的管理。有的公司即使有客戶管理系統(tǒng),其系統(tǒng)所實現(xiàn)的僅僅是一些簡單的客戶信息的管理,均不具有網(wǎng)絡(luò)游戲客戶信息分析的功能。 數(shù)據(jù)挖掘技術(shù)旨在尋找復雜數(shù)據(jù)中隱含于其內(nèi)的隱含信息與知識,可以幫助企業(yè)制定客戶管理上相關(guān)的決策。將數(shù)據(jù)挖掘中的先進方法應用于網(wǎng)絡(luò)游戲的客戶關(guān)系管理之,根據(jù)客戶屬性來劃分客戶的類別,進而建立起一對一的客戶服務體系,進而根據(jù)客戶所屬類別,網(wǎng)絡(luò)游戲運營商能夠進行差異化的管理。本文將自組織映射神經(jīng)網(wǎng)絡(luò)技術(shù)用于研究了網(wǎng)絡(luò)游戲客戶的自動分類,對客戶進行關(guān)系管理與分類,,設(shè)計了自組織映射神經(jīng)網(wǎng)絡(luò)聚類算法。通過對本課題的研究,將基于數(shù)據(jù)挖掘的客戶關(guān)系管理理念引入網(wǎng)絡(luò)游戲企業(yè),同時建立一個適合網(wǎng)絡(luò)游戲企業(yè)的客戶關(guān)系管理系統(tǒng)。該系統(tǒng)可以完成客戶管理、客戶基本信息管理、客戶分類、統(tǒng)計分析與打印等功能。論文詳細的分析了系統(tǒng)的整體設(shè)計、數(shù)據(jù)流圖,以及各個子模塊的設(shè)計,給出詳細的設(shè)計與實現(xiàn)過程。 對所設(shè)計的網(wǎng)絡(luò)游戲客戶關(guān)系管理系統(tǒng)進行測試,測試結(jié)果說明:本系統(tǒng)不但可以按照客戶的差別進行分類,而且還可以按照客戶待發(fā)掘的潛力進行分析。通過本系統(tǒng)可以不斷提高客戶的保有率,并且可以挖掘潛在客戶的潛力市場,全面提高游戲企業(yè)的利潤和市場競爭力。
[Abstract]:At present, the computer network popularization, the network game product variety and scale is also growing, game player can choose the types of games and game companies are more and more, among the relatively is the network game companies and different companies of the same kind of network game has become increasingly fierce competition. This requires the network game company the full analysis of more information network game customers, continuously improve customer satisfaction, enhance customer loyalty to the game and the game company. The network game company can occupy the market share of large, gain more profit, has become the primary problem of each network game enterprises. Due to the development of the domestic online game companies later, there is a big gap between the network game company customer management in and abroad. At present, China's small and medium-sized Customer management network game business is relatively loose, many companies did not develop advanced customer information system of science, it cannot effectively manage customer information. Some companies even have a customer management system, the implementation of the system is only a simple customer information management, network game has no customer information analysis function.
The data mining technology to find complex data hidden within the implied information and knowledge, can help enterprises to establish customer management decisions related to customer relationship management. The data mining method in advanced application in network game, to divide the customer category according to customer attributes, and then establish a customer then according to the customer service system, category, online game operators can be differentiated management. This paper applies self-organizing neural network technology for automatic classification of online game customer, customer relationship management and the classification, the self-organizing map neural network clustering algorithm design. Through the study of this topic the concept of customer relationship management, data mining is introduced based on online game companies, and establish a customer relationship management system for online game companies. The system The functions of customer management, customer basic information management, customer classification, statistical analysis and printing can be completed. The overall design, data flow diagram and the design of each sub module are analyzed in detail, and the detailed design and implementation process is given.
To test the network game customer relationship management system design, test results show that this system not only can be classified according to the customer's difference, but also can be analyzed by the potential customers to be discovered. This system can improve the retention rate of customers, and can excavate the potential customers market potential, improve enterprise game the profits and market competitiveness.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TP311.52
【參考文獻】
相關(guān)期刊論文 前6條
1 郭有強;胡學鋼;;基于項目增長法高效求解最大頻繁項集[J];安徽科技學院學報;2006年06期
2 張友志;錢萌;程玉勝;;基于關(guān)聯(lián)規(guī)則web日志挖掘方法的研究[J];安慶師范學院學報(自然科學版);2006年01期
3 曹丹陽;李晉宏;魏金強;張艷芳;;基于決策樹的英語四級成績分析[J];北方工業(yè)大學學報;2007年01期
4 傅景廣,許剛,王裕國;基于遺傳算法的聚類分析[J];計算機工程;2004年04期
5 蘇守寶,劉仁金;基于佳點集遺傳算法的聚類技術(shù)[J];計算機應用;2005年03期
6 周馳,高海兵,高亮,章萬國;粒子群優(yōu)化算法[J];計算機應用研究;2003年12期
本文編號:1658751
本文鏈接:http://sikaile.net/guanlilunwen/kehuguanxiguanli/1658751.html
最近更新
教材專著