天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 城建管理論文 >

大型鋼儲(chǔ)罐結(jié)構(gòu)的風(fēng)荷載和風(fēng)致屈曲

發(fā)布時(shí)間:2018-07-01 10:28

  本文選題:大型鋼儲(chǔ)罐 + 風(fēng)荷載。 參考:《浙江大學(xué)》2014年博士論文


【摘要】:儲(chǔ)罐結(jié)構(gòu)是一類(lèi)典型的薄殼結(jié)構(gòu),廣泛應(yīng)用于工農(nóng)業(yè)生產(chǎn)中,如石油、液化天然氣、糧食、水泥等各類(lèi)液體和固體的儲(chǔ)存,其中,石油化工業(yè)中的鋼制儲(chǔ)油罐最為常見(jiàn)。近年來(lái),隨著國(guó)民經(jīng)濟(jì)的發(fā)展和國(guó)家能源戰(zhàn)略的實(shí)施,以大型儲(chǔ)油罐為代表的大型鋼儲(chǔ)罐結(jié)構(gòu)的建造方興未艾。大型鋼儲(chǔ)罐結(jié)構(gòu)的特點(diǎn)是徑厚比大、高徑比低,屬風(fēng)敏感結(jié)構(gòu),在強(qiáng)風(fēng)甚至是長(zhǎng)時(shí)間和風(fēng)作用下容易失穩(wěn)破壞,特別是在空罐或儲(chǔ)液、儲(chǔ)料不多的情況下。在過(guò)去幾十年中,世界各國(guó)和地區(qū)已先后發(fā)生過(guò)多起鋼儲(chǔ)罐的風(fēng)毀事故。由于鋼儲(chǔ)罐的風(fēng)毀造成巨大的經(jīng)濟(jì)損失和嚴(yán)重的環(huán)境污染,其風(fēng)力穩(wěn)定問(wèn)題長(zhǎng)期以來(lái)受到眾多學(xué)者的廣泛關(guān)注和重視,然而已有的文獻(xiàn)主要關(guān)注中小型儲(chǔ)罐及筒倉(cāng)結(jié)構(gòu),對(duì)大型變壁厚鋼儲(chǔ)罐結(jié)構(gòu)鮮有涉及。因此,開(kāi)展大型鋼儲(chǔ)罐風(fēng)荷載和風(fēng)力穩(wěn)定的研究有著迫切的現(xiàn)實(shí)意義與廣泛的應(yīng)用前景。 本文主要通過(guò)風(fēng)洞試驗(yàn)和有限元分析對(duì)以十萬(wàn)方立式圓柱形鋼油罐為代表的大型鋼儲(chǔ)罐結(jié)構(gòu)的風(fēng)荷載和風(fēng)致屈曲進(jìn)行系統(tǒng)的研究,力求揭示這類(lèi)結(jié)構(gòu)的風(fēng)致屈曲機(jī)理及行為,為大型鋼儲(chǔ)罐結(jié)構(gòu)的合理抗風(fēng)設(shè)計(jì)提供參考和建議。 全文主要內(nèi)容如下: 第1章介紹本文研究的背景,回顧鋼儲(chǔ)罐及金屬圓柱殼結(jié)構(gòu)風(fēng)荷載和風(fēng)致屈曲的研究歷史,總結(jié)現(xiàn)行規(guī)范的設(shè)計(jì)規(guī)定,指出本文工作的出發(fā)點(diǎn)和思路。 第2章簡(jiǎn)要介紹流體動(dòng)力學(xué)原理及其數(shù)值解法——計(jì)算流體動(dòng)力學(xué)(CFD)的基本理論,采用CFD商用軟件Fluent對(duì)十萬(wàn)立方大型鋼儲(chǔ)罐進(jìn)行數(shù)值風(fēng)洞分析,初步了解這類(lèi)結(jié)構(gòu)的風(fēng)場(chǎng)繞流特點(diǎn)和風(fēng)荷載分布特征,并為后文大型鋼儲(chǔ)罐的風(fēng)洞試驗(yàn)設(shè)計(jì)提供參考。 第3章針對(duì)十萬(wàn)立方大型鋼儲(chǔ)罐單體條件下的風(fēng)荷載進(jìn)行風(fēng)洞試驗(yàn),考察三種不同的儲(chǔ)罐形式:敞口儲(chǔ)罐、平頂儲(chǔ)罐和穹頂儲(chǔ)罐;獲得上述三種儲(chǔ)罐的基本風(fēng)荷載數(shù)據(jù),包括平均風(fēng)壓和脈動(dòng)風(fēng)壓、偏度和峰度,對(duì)風(fēng)壓脈動(dòng)的概率分布進(jìn)行分析并與高斯分布比較;討論頂蓋形式對(duì)鋼儲(chǔ)罐罐壁部分風(fēng)荷載的影響、平均風(fēng)壓和脈動(dòng)風(fēng)壓的相關(guān)性,將獲得的風(fēng)荷載數(shù)據(jù)和以往相關(guān)研究成果和規(guī)范進(jìn)行對(duì)比,擬合圓柱殼罐壁平均風(fēng)荷載體型系數(shù)的傅里葉公式,以供設(shè)計(jì)應(yīng)用參考。 第4章以敞口儲(chǔ)罐為例,通過(guò)519種工況試驗(yàn),考察群體效應(yīng)對(duì)儲(chǔ)罐表面風(fēng)荷載的影響。試驗(yàn)包括三種典型的排列:兩相鄰儲(chǔ)罐包括串列、并列和錯(cuò)列、三角形三罐排列和正方形四罐排列;重點(diǎn)研究來(lái)流風(fēng)向角和罐群間距對(duì)鋼儲(chǔ)罐風(fēng)荷載分布的影響。 第5章簡(jiǎn)述薄殼結(jié)構(gòu)的力學(xué)特點(diǎn)、穩(wěn)定問(wèn)題的基本概念和薄殼結(jié)構(gòu)非線性穩(wěn)定理論的發(fā)展歷程;簡(jiǎn)單介紹圓柱薄殼結(jié)構(gòu)穩(wěn)定問(wèn)題的有限元求解方法;概括圓柱薄殼結(jié)構(gòu)穩(wěn)定問(wèn)題的分類(lèi)并提出側(cè)壓穩(wěn)定的概念;以實(shí)際工程中常用的五種圓柱鋼儲(chǔ)罐(容量為2000-50000m3)為例,建立有限元模型,對(duì)其風(fēng)致屈曲的一般行為進(jìn)行分析,討論焊縫缺陷和特征值模態(tài)缺陷對(duì)風(fēng)致屈曲性能的影響。 第6章以十萬(wàn)方鋼油罐為研究對(duì)象,建立有限元模型,進(jìn)行大型鋼儲(chǔ)罐結(jié)構(gòu)在平均風(fēng)荷載下的穩(wěn)定分析,包括線性特征值屈曲分析和幾何非線性分析,研究初始幾何缺陷對(duì)鋼儲(chǔ)罐穩(wěn)定性能的影響;討論壁厚腐蝕和儲(chǔ)液高度等基本參數(shù)對(duì)鋼儲(chǔ)罐風(fēng)致屈曲性能的影響;研究群體條件下鋼儲(chǔ)罐風(fēng)致屈曲承載力的變化特點(diǎn)。 第7章簡(jiǎn)述結(jié)構(gòu)動(dòng)力穩(wěn)定性原理和結(jié)構(gòu)動(dòng)力穩(wěn)定性的實(shí)用判定準(zhǔn)則;采用非線性動(dòng)力時(shí)程分析方法對(duì)大型鋼儲(chǔ)罐結(jié)構(gòu)的風(fēng)振屈曲行為進(jìn)行研究,考察初始缺陷對(duì)大型鋼儲(chǔ)罐結(jié)構(gòu)風(fēng)振屈曲性能的影響。 第8章結(jié)合現(xiàn)行規(guī)范和工程設(shè)計(jì)方法,從包邊角鋼、抗風(fēng)圈和加強(qiáng)圈三方面對(duì)大型鋼儲(chǔ)罐抗風(fēng)結(jié)構(gòu)的加強(qiáng)機(jī)理和破壞特點(diǎn)進(jìn)行剖析,討論不同國(guó)家規(guī)范所采用設(shè)計(jì)方法的差異,研究采取抗風(fēng)設(shè)計(jì)后鋼儲(chǔ)罐的風(fēng)致屈曲性能和破壞特點(diǎn),提出大型鋼儲(chǔ)罐結(jié)構(gòu)的抗風(fēng)設(shè)計(jì)建議。 第9章總結(jié)全文,概括全文主要結(jié)論,并提出進(jìn)一步研究工作的建議。
[Abstract]:Storage tank structure is a typical kind of thin shell structure, which is widely used in industrial and agricultural production, such as oil, liquefied natural gas, grain, cement and other liquids and solids. In the petroleum industry, steel tanks are the most common. In recent years, with the development of national economy and the implementation of national energy strategy, large oil storage tanks are replaced. The structure of large steel storage tank is in the ascendant. The structure of large steel storage tank is characterized by large diameter thickness ratio, low height to diameter ratio, wind sensitive structure, easy to lose stability under strong wind and even long time and wind, especially in the case of empty tank or liquid storage. In the past several decades, the countries and regions of the world have happened successively. The wind destruction of steel tanks has been caused by huge economic losses and serious environmental pollution caused by the destruction of steel tanks. The problem of wind stability has long been paid attention and paid attention to by many scholars. However, the existing literature focuses on small and medium storage tanks and silo structures, which are rarely involved in the structure of large wall thick steel tanks. Therefore, the study of wind load and wind stability of large steel storage tanks is of urgent practical significance and wide application prospects.
In this paper, wind tunnel test and finite element analysis are used to systematically study the wind and wind buckling of the large steel tank structure represented by one hundred thousand square vertical cylindrical steel tanks, and try to reveal the wind induced buckling mechanism and behavior of this kind of structure, and provide reference and suggestion for the rational wind resistance design of large steel storage tank structure.
The main contents of the full text are as follows:
The first chapter introduces the background of this study, reviews the history of wind load and wind induced buckling of steel storage tanks and metal cylindrical shells, summarizes the design regulations of current norms, and points out the starting points and ideas of this work.
The second chapter briefly introduces the principle of hydrodynamics and its numerical solution - the basic theory of computational fluid dynamics (CFD). The CFD commercial software Fluent is used to carry out numerical wind tunnel analysis on one hundred thousand cubic large steel tanks. The characteristics of wind flow around the wind field and the distribution characteristics of wind load are preliminarily understood, and the wind tunnel test for the later large steel tanks is tested. The design provides reference.
The third chapter conducts wind tunnel tests on the wind load of one hundred thousand cubic large steel tanks under single condition, and investigates three different types of storage tanks: open storage tanks, flat top storage tanks and dome tanks. The basic wind load data of the three kinds of tanks are obtained, including the average wind pressure and fluctuating wind pressure, deflection and kurtosis, and the probability distribution of the wind pressure pulsation. A row analysis is made and compared with the Gauss distribution; the influence of the roof form on the partial wind load on the wall of the steel tank, the correlation of the average wind pressure and the pulsating wind pressure is discussed, and the obtained wind load data is compared with the previous relevant research results and specifications, and the Fourier formula of the average wind load body coefficient of the cylindrical shell wall is fitted for the design and application. Reference resources.
The fourth chapter, taking open storage tanks as an example, investigates the effect of group effect on the surface wind load on the tank surface through 519 test conditions. The test includes three typical arrangements: two adjacent tanks including tandem, parallel and wrong columns, triangular three cans and square four cans, focusing on wind direction angle and tank group spacing to the wind load of steel tanks. The influence of distribution.
The fifth chapter briefly describes the mechanical characteristics of thin shell structure, the basic concept of stability problem and the development course of the theory of nonlinear stability of thin shell structure, briefly introduces the finite element solution method of the stability problem of thin cylindrical shell structure, generalizes the classification of the stability problem of the thin cylindrical shell structure and puts forward the concept of lateral pressure stability, which is used in the practical engineering. A cylindrical steel tank (capacity 2000-50000m3) is used as an example to establish a finite element model. The general behavior of its wind induced buckling is analyzed, and the effect of weld defects and eigenvalue modal defects on the wind induced buckling performance is discussed.
The sixth chapter takes the one hundred thousand square steel tank as the research object, establishes the finite element model, carries out the stability analysis of the large steel storage tank structure under the average wind load, including the linear eigenvalue buckling analysis and geometric nonlinear analysis, and studies the influence of the initial geometric imperfections on the stability of the steel storage tank, and discusses the basic parameters of the wall thickness corrosion and the height of the storage liquid. The influence of wind load on buckling behavior of steel storage tanks is studied.
In the seventh chapter, the principle of structural dynamic stability and the practical criterion for structural dynamic stability are described briefly. The wind vibration buckling behavior of large steel tank structure is studied by using nonlinear dynamic time history analysis method, and the effect of initial defects on the wind vibration buckling performance of large steel storage tank structure is investigated.
The eighth chapter, based on the current norms and engineering design methods, analyzes the strengthening mechanism and failure characteristics of the wind resistant structure of large steel tanks from the three aspects of the corner steel, the anti wind ring and the reinforcing ring, and discusses the differences in the design methods adopted by different national standards. The wind buckling performance and damage characteristics of the steel tanks after wind resistance design are studied. A proposal for wind resistance design for large steel tank structures.
The ninth chapter summarizes the full text, summarizes the main conclusions of the full text, and puts forward suggestions for further research.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TU391;TU312.1;TE972

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鄭史雄;;大型儲(chǔ)氣結(jié)構(gòu)設(shè)計(jì)風(fēng)荷載的確定[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年S1期

2 李會(huì)知,樊友景,吳義章,李思堂;不同粗糙表面的圓柱風(fēng)壓分布試驗(yàn)研究[J];工程力學(xué);2002年02期

3 馬駿;周岱;李華鋒;朱忠義;董石麟;;大跨度空間結(jié)構(gòu)抗風(fēng)分析的數(shù)值風(fēng)洞方法[J];工程力學(xué);2007年07期

4 周平槐,趙陽(yáng),黃業(yè)飛;風(fēng)荷載作用下柱支承鋼筒倉(cāng)的受力性能[J];工程設(shè)計(jì)學(xué)報(bào);2005年04期

5 沈國(guó)輝;王寧博;樓文娟;孫炳楠;;渡橋電廠冷卻塔倒塌的塔型因素分析[J];工程力學(xué);2012年08期

6 黃友欽;傅繼陽(yáng);;B-R準(zhǔn)則在大跨空間結(jié)構(gòu)風(fēng)致動(dòng)力穩(wěn)定中的應(yīng)用[J];廣州大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年06期

7 Rossana C.Jaca;Luis A.Godoy;;建造中金屬油罐在風(fēng)荷載作用下的屈曲[J];鋼結(jié)構(gòu);2010年07期

8 李銳;杜克;古米拉.吾買(mǎi)爾;董亞朋;;十萬(wàn)方油罐傾覆原因及修復(fù)方案[J];安裝;2009年01期

9 Eduardo M.Sosa;Luis A.Godoy;;風(fēng)壓下鋼儲(chǔ)罐屈曲荷載下限值計(jì)算的難點(diǎn)[J];鋼結(jié)構(gòu);2010年12期

10 胡方西,胡輝,,胡嘉敏,陳西慶,谷國(guó)傳;9417號(hào)臺(tái)風(fēng)對(duì)溫州造成災(zāi)害的因子分析及預(yù)防對(duì)策[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1996年03期

相關(guān)博士學(xué)位論文 前1條

1 鮑侃袁;大型雙曲冷卻塔的風(fēng)荷載和風(fēng)致響應(yīng)理論分析與試驗(yàn)研究[D];浙江大學(xué);2009年



本文編號(hào):2087483

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2087483.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)80f2b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com