不同地質(zhì)結(jié)構(gòu)對地埋管換熱器的影響研究
本文選題:均勻單物性地質(zhì)結(jié)構(gòu) + 非均勻雙層不同物性地質(zhì)結(jié)構(gòu); 參考:《重慶大學》2014年碩士論文
【摘要】:土壤源熱泵是我國目前比較成熟的一種新能源開發(fā)形式,因其污染小可以有效利用地熱能源而成為國家的能源利用重點發(fā)展方向。對于地埋管換熱器,我國根據(jù)自身情況對建筑負荷、介質(zhì)流速、巖土初始溫度及埋管換熱器的布置等耦合和相互影響均做相當多的研究,但是我國的地源熱泵并沒有進入完善的發(fā)展模式。另一方面我國對于各地區(qū)地質(zhì)缺乏詳細的地質(zhì)構(gòu)造分析,在地源熱泵設(shè)計過程中,對巖土物性參數(shù)的確定許多地區(qū)僅根據(jù)個人經(jīng)驗和局部測試,忽視了豎向地質(zhì)存在著不均勻性的分層構(gòu)造。 本課題以土壤源熱泵為研究對象,在查閱眾多文獻并依據(jù)前人提出的三維模型為基礎(chǔ),建立豎向兩種不同地質(zhì)結(jié)構(gòu)的三維模型,一種為均勻單物性地質(zhì)結(jié)構(gòu)模型,另一種為非均勻雙層不同物性地質(zhì)結(jié)構(gòu)模型。根據(jù)建模需要定義地質(zhì)類型,,為非均勻雙層不同物性地質(zhì)結(jié)構(gòu)模型的不同地質(zhì)分析提供基礎(chǔ);根據(jù)數(shù)值分析需要定義巖土類型,為非均勻雙層不同物性地質(zhì)結(jié)構(gòu)模型的不同巖土物性分析提供基礎(chǔ)。再根據(jù)數(shù)值分析需要定義平均換熱系數(shù)的概念,并將平均換熱系數(shù)作為判斷換熱器性能的評價參數(shù)。 對于均勻單物性地質(zhì)結(jié)構(gòu)模型,主要分析在不同單物性地質(zhì)物性、不同加熱功率、不同介質(zhì)流速及巖土初始平均溫度對換熱器性能參數(shù)的影響。分析結(jié)果發(fā)現(xiàn)均勻單物性地質(zhì)結(jié)構(gòu)中不同加熱功率、介質(zhì)流速及巖土初始平均溫度均對換熱器平均換熱系數(shù)沒有影響,與理論分析一致;根據(jù)固定工況下不同巖土參數(shù)類型對應(yīng)的平均換熱系數(shù)的變化,得出巖土參數(shù)類型中導熱系數(shù)越大平均換熱系數(shù)越大,并擬合得到相互關(guān)聯(lián)式。 對于非均勻雙層不同物性地質(zhì)結(jié)構(gòu)模型,分析主要分為兩方面,一方面研究不同加熱功率、介質(zhì)流速及巖土初始平均溫度對換熱器性能參數(shù)的影響并以實驗測試得到加熱功率和介質(zhì)流速的變化對平均換熱系數(shù)不產(chǎn)生影響,與均勻單物性地質(zhì)結(jié)構(gòu)形成對比,從而提出等效導熱系數(shù)概念。另一方面,根據(jù)已經(jīng)定義的地質(zhì)類型和巖土參數(shù)類型,分別研究在六種巖土參數(shù)類型下地質(zhì)類型對換熱器換熱性能參數(shù)的影響;研究在相同地質(zhì)類型下兩種巖土物性對換熱器換熱性能參數(shù)的影響;最后根據(jù)平均換熱系數(shù)K與下層巖土深度h,及上層巖土導熱系數(shù)λ和下層巖土導熱系數(shù)λ之間關(guān)系擬合關(guān)聯(lián)式。 通過該課題的研究,不僅可以得到利用平均傳熱系數(shù)來評價地埋管的換熱性能的合理意義,而且找到了平均傳熱系數(shù)與巖土導熱系數(shù)的關(guān)系以及其非影響參數(shù)。同時,可以通過豎向不同地質(zhì)結(jié)構(gòu)的導熱系數(shù)以及豎向分層深度,定量得到非均勻性物性參數(shù)條件下的平均換熱系數(shù)。這對于評價復雜地層下的地埋管換熱性能以及彌補熱響應(yīng)測試的不足,具有一定的參考價值。
[Abstract]:Ground-source heat pump (GSHP) is a mature new energy development form in our country at present. Because of its small pollution, it can effectively utilize geothermal energy, so it has become the key direction of energy utilization in our country. For ground buried tube heat exchangers, our country has done quite a lot of research on the coupling and mutual influence of building load, medium velocity, initial temperature of rock and soil and arrangement of buried tube heat exchangers according to our own situation. But our country ground source heat pump has not entered the perfect development mode. On the other hand, there is a lack of detailed geological structure analysis in our country. In the design process of ground-source heat pump, the determination of geophysical parameters in many areas is only based on personal experience and local test. It is neglected that the vertical geology has inhomogeneous stratified structures. In this paper, taking the ground source heat pump as the research object, based on the many literatures and based on the three dimensional model proposed by the predecessors, a three-dimensional model of vertical two different geological structures, one of which is a homogeneous single physical geological structure model, is established. The other is a non-uniform double-layer geological model with different physical properties. The geological type is defined according to the need of modeling, which provides the basis for the different geological analysis of heterogeneous double-layer different physical geological structure model, and defines the geotechnical type according to the need of numerical analysis. It provides a basis for the analysis of different geophysical properties of heterogeneous double layer models with different physical properties. Then the concept of average heat transfer coefficient is defined according to the need of numerical analysis, and the average heat transfer coefficient is taken as the evaluation parameter to judge the performance of heat exchanger. For homogeneous single physical geological structure model, the effects of different single physical properties, different heating power, different velocity of medium and initial average temperature of rock and soil on the performance parameters of heat exchanger are analyzed. The results show that different heating power, medium velocity and initial average temperature have no effect on the average heat transfer coefficient of the heat exchanger in homogeneous single physical geological structure, which is consistent with the theoretical analysis. According to the change of average heat transfer coefficient corresponding to different geotechnical parameter types under fixed working conditions, the larger the average heat transfer coefficient of geotechnical parameter type is, the greater the average heat transfer coefficient is, and the correlation formula is obtained. For the non-uniform double-layer models of different physical properties, the analysis is mainly divided into two aspects. On the one hand, the different heating power is studied. The effects of medium velocity and initial average temperature of rock and soil on the performance parameters of heat exchangers are studied. The experimental results show that the change of heating power and velocity of medium has no effect on the average heat transfer coefficient, which is in contrast to the homogeneous single physical geological structure. Thus, the concept of equivalent thermal conductivity is proposed. On the other hand, according to the defined geological types and geotechnical parameter types, the influence of geological types on heat transfer performance parameters of heat exchangers under six types of geotechnical parameters is studied respectively. The effects of two kinds of geotechnical properties on the heat transfer properties of heat exchangers under the same geological type are studied. Finally, according to the relationship between the average heat transfer coefficient K and the depth of the lower rock and soil, as well as the relationship between the thermal conductivity coefficient 位 of the upper rock and soil and the thermal conductivity coefficient of the lower rock and soil. Through the research of this subject, we can not only get the reasonable meaning of using average heat transfer coefficient to evaluate the heat transfer performance of buried pipe, but also find the relationship between average heat transfer coefficient and thermal conductivity of rock and soil and its non-influence parameters. At the same time, the average heat transfer coefficient under the condition of non-uniformity physical parameters can be quantitatively obtained by means of the thermal conductivity and vertical delamination depth of different vertical geological structures. It has some reference value for evaluating the heat transfer performance of buried pipes in complex strata and making up for the deficiency of thermal response test.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TU831
【參考文獻】
相關(guān)期刊論文 前10條
1 夏才初;曹詩定;王偉;;能源地下工程的概念、應(yīng)用與前景展望[J];地下空間與工程學報;2009年03期
2 楊俊偉;冉偉彥;佟紅兵;;地埋管換熱孔換熱系數(shù)及其在工程設(shè)計中的應(yīng)用研究[J];城市地質(zhì);2011年02期
3 史斗,鄭軍衛(wèi);我國能源發(fā)展戰(zhàn)略研究[J];地球科學進展;2000年04期
4 劉憲英,王勇,胡鳴明,魏唐棣;地源熱泵地下垂直埋管換熱器的試驗研究[J];重慶建筑大學學報;1999年05期
5 何雪冰,丁勇,劉憲英;地源熱泵埋管換熱器傳熱模型及其應(yīng)用[J];重慶建筑大學學報;2004年02期
6 胡平放;康龍;江章寧;於仲義;孫啟明;徐菱虹;;地源熱泵U型埋管換熱影響因素的數(shù)值模擬與分析[J];流體機械;2009年03期
7 楊衛(wèi)波,董華,蘇有亮,林國亮;土壤源熱泵的研究與開發(fā)[J];能源技術(shù);2003年06期
8 丁勇 ,李百戰(zhàn) ,盧軍 ,孫純武 ,劉憲英;地源熱泵系統(tǒng)地下埋管換熱器設(shè)計(2)[J];暖通空調(diào);2005年11期
9 朱琴;龔延風;;地埋管換熱器運行工況下?lián)Q熱量變化特性的研究[J];暖通空調(diào);2010年05期
10 刁永飛,張小力,伍貽文;地源熱泵的優(yōu)越性及前景展望[J];能源研究與信息;2002年01期
本文編號:2087524
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2087524.html