典型圍合式建筑室內(nèi)外空氣環(huán)境特征的研究
本文選題:圍合式建筑 + 庭院; 參考:《東華大學(xué)》2014年博士論文
【摘要】:庭院式建筑(即圍合式建筑)是一種具有悠久歷史的建筑布局形式。因其圍合空間具有較好的自然通風(fēng)利用潛力,并易于營造相對(duì)獨(dú)立的戶外微氣候,因而被越來越多地應(yīng)用在城市現(xiàn)代建筑結(jié)構(gòu)中。許多公共建筑中的庭院被當(dāng)成中心或主要公共活動(dòng)場所。經(jīng)過幾十年的不斷優(yōu)化,很多庭院建筑已經(jīng)能夠與當(dāng)?shù)貧夂蛱卣鬟M(jìn)行有機(jī)結(jié)合以實(shí)現(xiàn)充分利用能源和節(jié)能的目的。如在北方地區(qū),利用庭院作為防風(fēng)建筑以及吸收太陽能;而南方氣候下,庭院式建筑則可以減少太陽輻射并有效地降低庭院內(nèi)和室內(nèi)平均氣溫。 然而,在冬季寒冷氣候條件下,圍合式建筑所具有的自然通風(fēng)優(yōu)勢是否會(huì)造成冬季室內(nèi)通風(fēng)熱損失過大;在為人們戶外活動(dòng)需求營造出良好庭院微氣候的同時(shí),是否有足夠的能力移走內(nèi)部污染物。這些問題是圍合式建筑的節(jié)能效應(yīng)能否充分發(fā)揮的關(guān)鍵。為此本文針對(duì)圍合式建筑室內(nèi)外空氣環(huán)境特征展開了實(shí)測與數(shù)值模擬研究,同時(shí)對(duì)非圍合式建筑(行列式布局)也進(jìn)行了對(duì)比實(shí)測與數(shù)值計(jì)算分析。 本文先針對(duì)具有高人員密度特征的高校宿舍建筑,對(duì)非圍合式建筑的冬季和夏季室內(nèi)空氣品質(zhì)和熱舒適狀況進(jìn)行了長時(shí)間現(xiàn)場實(shí)測和調(diào)查。在這一基礎(chǔ)上,分別對(duì)圍合式建筑與非圍合式建筑的室內(nèi)空氣環(huán)境進(jìn)行了對(duì)比測量。結(jié)果表明,相同室外氣象條件下,圍合式建筑的房間通風(fēng)量大于非圍合式建筑,因而降低了圍合式建筑冬季非供暖房間對(duì)太陽能的利用效果;但在高人員密度房間中,這雖然導(dǎo)致了較低的室內(nèi)氣溫,但另一方面卻改善了室內(nèi)空氣品質(zhì)。 通過對(duì)不同的圍合式庭院空氣環(huán)境的實(shí)測分析發(fā)現(xiàn),若圍合式建筑中設(shè)置有空調(diào)系統(tǒng),則空調(diào)房間在夏、冬兩季滲透出的冷空氣或熱空氣對(duì)庭院空氣環(huán)境和通風(fēng)量的影響明顯。特別是供暖季節(jié),即使在微風(fēng)情況下,本文實(shí)測結(jié)果均表明,熱浮力誘導(dǎo)的庭院通風(fēng)量大約相當(dāng)于室外背景風(fēng)速為4.5~5.9m/s時(shí)形成的風(fēng)壓通風(fēng)量,因此,可以有效地避免污染物在庭院內(nèi)的滯留和積聚;同時(shí),由于庭院內(nèi)氣溫高于環(huán)境空氣溫度,可使實(shí)測建筑的圍護(hù)結(jié)構(gòu)熱損失減少11%~20%。自然通風(fēng)對(duì)庭院熱環(huán)境的影響在不同的窗戶開閉和太陽輻射條件下效果不同,合理控制窗戶開啟狀態(tài)可有效改善庭院內(nèi)熱環(huán)境的舒適性。 根據(jù)圍合式建筑的結(jié)構(gòu)特點(diǎn),本文利用數(shù)值方法對(duì)建筑庭院內(nèi)的氣流流動(dòng)和污染物濃度分布進(jìn)行了不穩(wěn)態(tài)和穩(wěn)態(tài)數(shù)值模擬,以考查其基本規(guī)律和特征,并以行列式建筑為基準(zhǔn),分析和比較了不同風(fēng)向時(shí),圍合式建筑形式對(duì)污染物擴(kuò)散的影響。結(jié)果表明,對(duì)于不穩(wěn)態(tài)過程,污染源散發(fā)期間,圍合式建筑比行列式建筑附近污染物濃度高,但污染物停止散發(fā)后,前者迅速衰減而后者衰減較慢。不同于行列式布局,圍合式建筑庭院內(nèi)污染物濃度對(duì)背景風(fēng)向的變化不敏感。 穩(wěn)態(tài)條件下,大多數(shù)風(fēng)向時(shí),庭院下部區(qū)域的排污能力與行列式布局基本相當(dāng),且庭院上部空間的排污能力好于行列式布局;降低庭院進(jìn)口的開口高度對(duì)庭院內(nèi)2m以下空間空氣品質(zhì)的影響較小。由于減小庭院進(jìn)口面積可使庭院微氣候的獨(dú)立性更好,因此,庭院建筑采用高度較低的進(jìn)口(即交通口),比高開口更易與當(dāng)?shù)貧夂蛱卣飨嘟Y(jié)合,緩解庭院微氣候獨(dú)立性與空氣品質(zhì)對(duì)通風(fēng)量要求恰好相反的矛盾;同時(shí)發(fā)現(xiàn),庭院迎風(fēng)面開口的高度對(duì)庭院內(nèi)污染物濃度隨建筑高度增大的幅度并無實(shí)質(zhì)性影響。
[Abstract]:Courtyard architecture (enclosure Architecture) is a kind of architectural layout with a long history. Because its enclosure space has good natural ventilation potential and is easy to create relatively independent outdoor microclimate, it is used more and more in modern urban architecture. The courtyard in many public buildings is regarded as the center or Major public places. After decades of continuous optimization, many courtyard buildings have been able to combine with local climate features to make full use of energy and energy conservation. In the north, courtyards are used as windbreaks and solar energy; and in the southern climate, courtyards can reduce the sun. Radiation and effectively reduce indoor and indoor air temperature.
However, under the cold weather conditions in winter, whether the natural ventilation advantages of the enclosed buildings will cause excessive heat loss in the indoor air in winter, and whether there is enough ability to remove the internal pollutants while creating a good courtyard microclimate for the people's outdoor activities. These problems are energy saving effects of the enclosed buildings. In this paper, the measurement and numerical simulation of the indoor and outdoor air environment characteristics of the enclosed building are studied, and the non enclosed building (the determinant layout) is also compared with the measured and numerical analysis.
In this paper, a long time field measurement and investigation on indoor air quality and thermal comfort of non perinatal buildings in college dormitories with high personnel density are conducted in this paper. On this basis, the indoor air environment of enclosed buildings and non enclosed buildings is compared and measured. Under the same outdoor weather conditions, the ventilation volume of the enclosed building is greater than that of the non enclosed building, thus reducing the utilization effect of the non heating room in the enclosed building in winter, but in the high density room, this leads to lower indoor air temperature, but on the other hand it improves the indoor air quality.
Through the measurement and analysis of the different enclosed courtyard air environment, it is found that if the air conditioning system is set in the enclosed building, the cold air or hot air permeated in the two quarter of the air-conditioned room has obvious influence on the air environment and ventilation in the courtyard. Especially in the heating season, even in the case of breeze, the results of this paper all show that The yard ventilation induced by thermal buoyancy is approximately equal to the air pressure ventilation of 4.5 ~ 5.9m/s of the outdoor background wind. Therefore, it can effectively avoid the retention and accumulation of pollutants in the courtyard. At the same time, the heat loss of the built enclosure structure can be reduced by 11% to 20%. because the temperature in the courtyard is higher than the ambient air temperature. The effect of wind on the thermal environment of the courtyard is different under the conditions of opening and closing the windows and the conditions of solar radiation. The reasonable control of the opening of the window can effectively improve the comfort of the thermal environment in the courtyard.
According to the structural characteristics of the enclosed building, the numerical simulation of the flow of air flow and the distribution of pollutant concentration in the courtyard is numerically simulated in this paper to examine its basic laws and characteristics, and to analyze and compare the diffusion of pollutants in the form of enclosed buildings on the basis of the determinant architecture. The results show that, for the unstable process, the concentration of pollutants in the enclosed building is higher than that of the determinant, but the former attenuates quickly and the latter attenuates slowly. The concentration of contaminants in the enclosed building courtyard is not sensitive to the change of the background wind direction.
In the steady state, the discharge capacity of the lower part of the courtyard is basically equal to the determinant layout in most wind directions, and the discharge capacity of the upper courtyard space is better than the layout of the determinant. Reducing the opening height of the courtyard entrance has little effect on the air quality below the 2m space in the courtyard. As a result, the courtyard architecture uses a relatively low level of import (that is, the port of traffic), which is more easily combined with the local climate characteristics than the high opening, alleviating the opposite contradiction between the independence of the courtyard and the air quality requirements for the air quality; and it is found that the height of the opening of the courtyard on the windward surface of the courtyard is higher with the building. There is no substantial effect on the magnitude of the increase.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU83
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔡歡歡;鐘珂;亢燕銘;;中庭建筑內(nèi)顆粒物濃度空間分布的模擬[J];東華大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年06期
2 亢燕銘;張寧波;寇麗;王友君;鐘珂;;地面熱力條件對(duì)庭院式建筑內(nèi)部空氣環(huán)境的影響[J];東華大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
3 王勇;鐘珂;袁永東;;通透式庭院建筑冬季室內(nèi)熱環(huán)境分析[J];東華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
4 彭小云,柳孝圖;中庭的熱環(huán)境與節(jié)能探討[J];工業(yè)建筑;2002年06期
5 李念平;何東岳;李靖;侯素娟;張敏慧;;中庭式住宅建筑熱壓通風(fēng)的預(yù)測模型研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期
6 曹彬;朱穎心;歐陽沁;黃莉;程浩蕃;胡紅波;鄧高峰;;公共建筑室內(nèi)環(huán)境質(zhì)量與人體舒適性的關(guān)系研究[J];建筑科學(xué);2010年10期
7 張君瑛;吳喜平;章學(xué)來;劉猛;葉金;;夏季建筑中庭內(nèi)的熱環(huán)境數(shù)值模擬及中庭外窗自然通風(fēng)研究[J];流體機(jī)械;2008年02期
8 楊建坤,張旭,劉東,黃艷;自然通風(fēng)作用下中庭建筑熱環(huán)境的數(shù)值模擬[J];暖通空調(diào);2005年05期
9 王志毅,谷波,趙敬源;夏季庭院對(duì)太陽輻射熱的遮擋作用[J];太陽能學(xué)報(bào);2002年04期
10 趙敬源;劉加平;;城市街谷綠化的動(dòng)態(tài)熱效應(yīng)[J];太陽能學(xué)報(bào);2009年08期
,本文編號(hào):1878645
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1878645.html