基于時變系數(shù)回歸分析的動態(tài)組合投資決策及應(yīng)用
[Abstract]:Markowitz uses quadratic programming method to solve mean-variance model and creates the first step of modern portfolio investment theory. The traditional portfolio decision model is static and does not take into account the time-varying characteristics of financial asset returns and risks. In addition, the mean-variance model based on quadratic programming is inefficient in solving the model on the one hand, and can only solve the problem of variance risk portfolio investment on the other hand. Therefore, the mean variance model and mean VaR model are transformed into mean regression and quantile regression respectively, and the dynamic portfolio decision model is constructed by time-varying coefficient regression analysis to adjust the portfolio weight for investors in real time. Achieving better portfolio outcomes (higher returns or lower risk) provides the basic tools. In this paper, the following two aspects of the research work are mainly carried out. (1) based on the mean regression of time-varying coefficients, a new algorithm for dynamic portfolio decision model is presented. The algorithm has two main characteristics: first, the optimization problem in the mean-variance portfolio investment decision is transformed into the classical mean regression problem in statistics; second, the feasibility least square method is used to solve the model. The time-varying weight of portfolio investment is obtained. Select the Shanghai Composite Index and Shanghai Stock Exchange listed 16 stocks for empirical research, through rolling analysis and return test, The dynamic portfolio decision model based on the mean regression of time-varying coefficients is compared with the traditional portfolio investment decision model. Both the risk and the Sharpe ratio are better than the latter. (2) combined with the model structure of the ordinary quantile regression and the characteristics of the feasible least square method, the dynamic error setting is introduced into the loss function of the ordinary quantile regression model. In this paper, a new quantile regression model with time-varying coefficients is proposed, and its model representation and parameter estimation method: feasible quantile regression method is given. The quantile regression model with time-varying coefficients can meet the needs of more extensive data types, reflect the time-varying characteristics of regression coefficients, and reveal the influence of explanatory variables on the complete conditional distribution of response variables, which has a broad application prospect. It is applied to portfolio investment decision analysis to construct VaR risk dynamic portfolio investment scheme, and to compare it with VaR risk static portfolio scheme, variance risk dynamic portfolio investment scheme and so on. The empirical results show that the VaR risk dynamic portfolio investment scheme based on time-varying coefficient quantile regression model is superior to the other three schemes in terms of return, variance, Sharpe ratio and VaR value.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:F224;F832.51
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 王霄松;葉珊囡;;改革企業(yè)內(nèi)部分配制度的有效嘗試——對常州電池廠實行效能動態(tài)組合工資制的調(diào)查[J];經(jīng)濟(jì)工作通訊;1992年12期
2 王魯捷;韓志成;;企業(yè)與經(jīng)營者動態(tài)組合激勵機(jī)制探索[J];現(xiàn)代經(jīng)濟(jì)探討;2007年04期
3 ;[J];;年期
相關(guān)會議論文 前5條
1 陳玉巖;劉剛;;應(yīng)用動態(tài)組合化學(xué)的方法合成萬古霉素衍生物[A];中國化學(xué)會第二十五屆學(xué)術(shù)年會論文摘要集(上冊)[C];2006年
2 李鎮(zhèn);方瑩;孔偉良;;動態(tài)組合式分離器的數(shù)值模擬[A];中國顆粒學(xué)會第六屆學(xué)術(shù)年會暨海峽兩岸顆粒技術(shù)研討會論文集(下)[C];2008年
3 曾慧清;黃林鵬;陳俊清;;基于ASM的普適環(huán)境下的服務(wù)動態(tài)組合[A];2010年全國開放式分布與并行計算機(jī)學(xué)術(shù)會議論文集[C];2010年
4 張穎;張銘;王蜀安;;數(shù)字圖書館中的Web服務(wù)自動組合[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2004年
5 劉青;連祥鑒;;基于上下文的Web服務(wù)動態(tài)組合[A];2008年全國開放式分布與并行計算機(jī)學(xué)術(shù)會議論文集(上冊)[C];2008年
相關(guān)重要報紙文章 前3條
1 孔曉安;臨安審計建立“五層動態(tài)組合”管理模式[N];中國審計報;2007年
2 華富策略精選基金經(jīng)理 季雷;開啟股市的時光隧道[N];證券日報;2011年
3 本報特約記者 張力 特約通訊員 楊存;鷹擊長空[N];解放軍報;2012年
相關(guān)博士學(xué)位論文 前1條
1 陳玉巖;萬古霉素動態(tài)組合化學(xué)研究[D];中國協(xié)和醫(yī)科大學(xué);2007年
相關(guān)碩士學(xué)位論文 前9條
1 馮逸飛;動態(tài)組合螺旋傳動裝置的結(jié)構(gòu)設(shè)計與分析[D];國防科學(xué)技術(shù)大學(xué);2013年
2 肖文彬;基于流線動態(tài)組合的十字交叉口優(yōu)化控制研究[D];重慶交通大學(xué);2015年
3 張婷婷;基于時變系數(shù)回歸分析的動態(tài)組合投資決策及應(yīng)用[D];合肥工業(yè)大學(xué);2016年
4 童艷;語義Web服務(wù)動態(tài)組合平臺的研究與算法設(shè)計[D];電子科技大學(xué);2006年
5 周中成;基于OWL-S的語義Web服務(wù)自動發(fā)現(xiàn)、選擇、執(zhí)行及動態(tài)組合平臺[D];江南大學(xué);2005年
6 孫連俠;基于分層著色Petri網(wǎng)的Web服務(wù)動態(tài)組合建模與驗證[D];中國石油大學(xué);2011年
7 周保林;基于UML的Web Services服務(wù)動態(tài)組合[D];云南大學(xué);2011年
8 劉明升;Web服務(wù)動態(tài)組合的關(guān)鍵技術(shù)研究[D];大連海事大學(xué);2008年
9 閆志剛;基于語義的Web服務(wù)動態(tài)組合的研究[D];華北電力大學(xué)(北京);2011年
,本文編號:2276959
本文鏈接:http://sikaile.net/guanlilunwen/bankxd/2276959.html