時(shí)間序列分析在經(jīng)濟(jì)投資中的研究與應(yīng)用
[Abstract]:Since the 1980s, the (FDI) activities of foreign direct investment have been increasing day by day, which has gradually become an important form of international capital flow. Driven by FDI, the economy and technology of less developed countries have been rapidly improved. Under the influence of economic globalization and China's reform and opening up strategy, China has become a big country utilizing FDI. Therefore, it is of great significance to study foreign direct investment and make rational and effective decisions in the new period. Time series analysis is a mature discipline based on mathematical statistics, which is widely used in the economic field. Time series analysis can model and predict the situation of foreign direct investment in China, and provide decision basis for the government and investors. In this paper, the time series analysis theory is used to model and predict the situation of foreign direct investment (FDI) in China. The main contents include: 1. The change law of FDI data in our country is deeply studied, and the model is built for it. Through the analysis of the actual data, we can find the law of the development of FDI data over time in our country. Aiming at the problem that FDI data is vulnerable to noise interference, wavelet analysis is used to eliminate the influence of noise on prediction. The MATLAB and Eviews6.0 software are used to simulate the foreign direct investment data in China. The results show that this method is more accurate than the basic time series analysis method. 2. Based on the advantages of linear and nonlinear time series models, the foreign direct investment (FDI) in China is analyzed and modeled. Because the linear model only describes the autocorrelation and ignores the heteroscedasticity, the nonlinear model can solve this problem better. Therefore, the nonlinear model can be added to the linear model to show the variation of FDI data more scientifically and comprehensively. 3. On the basis of time series analysis, intervention analysis is incorporated to make the model more realistic. In real life, economic data may be affected by unexpected events, which will have a negative impact on time series analysis, and intervention model can be used to eliminate the impact of intervention. In view of the impact of economic crisis on FDI data in China, the intervention model is established by using Eviews6.0 software, and the time series model is established for the data after excluding the intervention. Through the comparison of the forecast results, it is found that the intervention analysis reduces the forecast error of the situation of foreign direct investment in China and improves the forecast precision.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F832.6;O211.61;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董曉霞;李干瓊;劉自杰;;農(nóng)產(chǎn)品市場(chǎng)價(jià)格短期預(yù)測(cè)方法的選擇及應(yīng)用——以鮮奶零售價(jià)格為例[J];山東農(nóng)業(yè)科學(xué);2010年01期
2 李蕊;;VaR方法在開放式基金風(fēng)險(xiǎn)評(píng)估中的運(yùn)用—基于PARCH模型的分析[J];河南城建學(xué)院學(xué)報(bào);2010年06期
3 曾亮;;基于AR-GARCH模型的城鎮(zhèn)職工平均工資實(shí)證研究[J];長(zhǎng)沙大學(xué)學(xué)報(bào);2011年02期
4 吳繼忠;;GPS觀測(cè)數(shù)據(jù)的小波閾值法消噪[J];大地測(cè)量與地球動(dòng)力學(xué);2009年04期
5 陳必焰;戴吾蛟;蔡昌盛;匡翠林;;時(shí)間序列與神經(jīng)網(wǎng)絡(luò)組合方法在電離層TEC預(yù)報(bào)中的應(yīng)用[J];工程勘察;2011年04期
6 谷政;江惠坤;;非平穩(wěn)時(shí)間序列的小波混合方法及其應(yīng)用[J];系統(tǒng)工程;2008年05期
7 谷政;褚保金;江惠坤;;非平穩(wěn)時(shí)間序列分析的WAVELET—ARMA組合方法及其應(yīng)用[J];系統(tǒng)工程;2010年01期
8 李東福;董雷;禮曉飛;廖毅;;基于多尺度小波分解和時(shí)間序列法的風(fēng)電場(chǎng)風(fēng)速預(yù)測(cè)[J];華北電力大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
9 芮執(zhí)多;;國(guó)家物資儲(chǔ)備局市場(chǎng)運(yùn)作的干預(yù)模型分析[J];上海經(jīng)濟(jì)研究;2009年05期
10 高春玲;;居民消費(fèi)價(jià)格指數(shù)預(yù)測(cè)的分解模型研究——以武漢市時(shí)間序列數(shù)據(jù)為例[J];價(jià)格理論與實(shí)踐;2010年02期
相關(guān)碩士學(xué)位論文 前7條
1 王穎波;經(jīng)營(yíng)系統(tǒng)中的時(shí)間序列分析[D];中國(guó)科學(xué)院研究生院(軟件研究所);2003年
2 張燕;金融時(shí)間序列分析中的小波方法[D];河海大學(xué);2006年
3 楊韜;論中國(guó)利用外資的現(xiàn)狀、問題及其對(duì)策[D];吉林大學(xué);2006年
4 閆聲國(guó);山東利用外商直接投資經(jīng)濟(jì)效應(yīng)的實(shí)證分析[D];青島科技大學(xué);2008年
5 王莎莎;基于小波消噪GARCH模型的匯率波動(dòng)序列研究[D];山東大學(xué);2009年
6 魏寧;時(shí)間序列分析方法研究及其在陜西省GDP預(yù)測(cè)中的應(yīng)用[D];西北農(nóng)林科技大學(xué);2010年
7 趙瑋英;時(shí)間序列分析在氣象中的應(yīng)用[D];揚(yáng)州大學(xué);2010年
本文編號(hào):2158222
本文鏈接:http://sikaile.net/guanlilunwen/bankxd/2158222.html