融合案例推理與分類器的乳腺腫瘤輔助診斷
發(fā)布時間:2021-10-13 23:09
本研究采用樸素貝葉斯,K最近鄰(K-NN)和基于案例推理(CBR)的方法構(gòu)建了乳腺癌(BC)診斷模型,目的是通過提高準確率來優(yōu)化CBR的檢索過程。根據(jù)醫(yī)療專家的建議和幫助,我們選擇了2014年至2016年莫桑比克馬普托市中心醫(yī)院(HCM)莫桑比克乳腺癌數(shù)據(jù)集的樣本數(shù)據(jù)。在乳腺癌診斷數(shù)據(jù)庫中選擇了約1200名患者作為病例,從中產(chǎn)生了培訓(xùn)和測試集。因此,本文研究了一種將樸素貝葉斯(Na?ve Bayes),CBR和KNN相結(jié)合的乳腺癌診斷智能模型。實施該模式的主要步驟包括:(1)采用樸素貝葉斯模型將集合分為兩類(2)將K-NN算法應(yīng)用于CBR中以檢索大多數(shù)類似情況。在第一階段,樸素貝葉斯被用來估計患者是否有惡性腫瘤或良性腫瘤,并與K-NN和J48決策樹分類器進行比較,樸素貝葉斯表現(xiàn)出優(yōu)異的表現(xiàn),準確率為95%。在第二階段我們測試了選定的k值,結(jié)果顯示99%的準確度。實施K-NN后提出的診斷框架的檢索結(jié)果顯示,檢索到的病例之間的相似性比率高,最小距離一直低至0.13。結(jié)果顯示實施的模型能夠整合樸素貝葉斯和CBR用于乳腺癌診斷。它可以為衛(wèi)生從業(yè)人員提供乳腺癌診斷的支持系統(tǒng),從而減少診斷不準確性...
【文章來源】:合肥工業(yè)大學安徽省 211工程院校 教育部直屬院校
【文章頁數(shù)】:79 頁
【學位級別】:碩士
【文章目錄】:
Acknowledgements
ABSTRACT
摘要
Chapter 1 Introduction
1.1 Background
1.2 Problem Statement
1.3 Situation in Mozambique and China
1.4 Research Structure
Chapter 2 Literature Review
2.1 Breast Cancer Overview
2.2 Case-Based Reasoning (CBR) in healthcare
2.2.1 CBR in Breast Cancer
2.2.2 Case retrieval methods in CBR
Chapter 3 Proposed Conceptual Design and Model Implementation
3.1 Data Exploration
3.2 Descriptive Model (Phase I)
3.2.1 Na?ve Bayes
3.2.2 J48 Decision trees Classifier
3.2.3 K-NN Classifier
3.3 K-NN based CBR Retrieval (Phase II)
3.3.1 Nearest Neighbor Classifiers
3.3.2 Indices/ Indexing
3.3.3 Case retrieval
3.3.4 Case Adoption
Chapter 4 Results and Discussion
4.1 Data Preprocessing
4.1.1 Dimensionality reduction / Feature subset selection
4.1.2 Discretization and Binarization
4.1.3 Variable transformation
4.1.4 Feature Creation
4.2 Phase I
4.2.1 Evaluation
4.2.2 Comparative Performance Analysis of the Classifiers
4.3 Phase II
4.3.1 Evaluation performance of K-NN
4.3.2 CBR retrieval results
Chapter 5 Conclusion
5.1 Overall Summary
5.2 Limitations
5.3 Future Research
References
List of Academic Activities and Achievements during the Degree
【參考文獻】:
期刊論文
[1]案例推理的故障診斷技術(shù)研究綜述[J]. 柳玉,賁可榮. 計算機科學與探索. 2011(10)
[2]CBR技術(shù)在Multi-Agent故障診斷中的應(yīng)用[J]. 朱群雄,劉光. 計算機工程與應(yīng)用. 2004(21)
[3]基于范例推理的結(jié)核病專家系統(tǒng)[J]. 張治洪,童溶,王仲元,王巍. 天津理工學院學報. 1997(03)
本文編號:3435581
【文章來源】:合肥工業(yè)大學安徽省 211工程院校 教育部直屬院校
【文章頁數(shù)】:79 頁
【學位級別】:碩士
【文章目錄】:
Acknowledgements
ABSTRACT
摘要
Chapter 1 Introduction
1.1 Background
1.2 Problem Statement
1.3 Situation in Mozambique and China
1.4 Research Structure
Chapter 2 Literature Review
2.1 Breast Cancer Overview
2.2 Case-Based Reasoning (CBR) in healthcare
2.2.1 CBR in Breast Cancer
2.2.2 Case retrieval methods in CBR
Chapter 3 Proposed Conceptual Design and Model Implementation
3.1 Data Exploration
3.2 Descriptive Model (Phase I)
3.2.1 Na?ve Bayes
3.2.2 J48 Decision trees Classifier
3.2.3 K-NN Classifier
3.3 K-NN based CBR Retrieval (Phase II)
3.3.1 Nearest Neighbor Classifiers
3.3.2 Indices/ Indexing
3.3.3 Case retrieval
3.3.4 Case Adoption
Chapter 4 Results and Discussion
4.1 Data Preprocessing
4.1.1 Dimensionality reduction / Feature subset selection
4.1.2 Discretization and Binarization
4.1.3 Variable transformation
4.1.4 Feature Creation
4.2 Phase I
4.2.1 Evaluation
4.2.2 Comparative Performance Analysis of the Classifiers
4.3 Phase II
4.3.1 Evaluation performance of K-NN
4.3.2 CBR retrieval results
Chapter 5 Conclusion
5.1 Overall Summary
5.2 Limitations
5.3 Future Research
References
List of Academic Activities and Achievements during the Degree
【參考文獻】:
期刊論文
[1]案例推理的故障診斷技術(shù)研究綜述[J]. 柳玉,賁可榮. 計算機科學與探索. 2011(10)
[2]CBR技術(shù)在Multi-Agent故障診斷中的應(yīng)用[J]. 朱群雄,劉光. 計算機工程與應(yīng)用. 2004(21)
[3]基于范例推理的結(jié)核病專家系統(tǒng)[J]. 張治洪,童溶,王仲元,王巍. 天津理工學院學報. 1997(03)
本文編號:3435581
本文鏈接:http://sikaile.net/yixuelunwen/zlx/3435581.html
最近更新
教材專著