Radiomics方法研究應(yīng)用進(jìn)展
發(fā)布時(shí)間:2019-03-20 09:46
【摘要】:Radiomics(影像組學(xué))方法是指對(duì)CT、MRI和PET等大量醫(yī)學(xué)圖像提取定量影像學(xué)特征并進(jìn)行分析,找到疾病的影像學(xué)標(biāo)識(shí)物,從而實(shí)現(xiàn)對(duì)疾病的精準(zhǔn)預(yù)測(cè)、診斷及預(yù)后評(píng)估等。眾所周知,癌癥治療是醫(yī)學(xué)界面臨的重要難題,盡早發(fā)現(xiàn)、盡早治療能夠極大地改善患者的生存率。腫瘤細(xì)胞的變化一般通過基因表達(dá)進(jìn)行監(jiān)測(cè),但也可以通過影像學(xué)標(biāo)識(shí)物進(jìn)行監(jiān)測(cè),所以Radiomics方法被廣泛應(yīng)用于癌癥的預(yù)測(cè)、早期診斷和治療,是當(dāng)今國(guó)內(nèi)外影像醫(yī)學(xué)及其相關(guān)專業(yè)的研究熱點(diǎn)。本文首先對(duì)Radiomics方法中需要解決的4個(gè)關(guān)鍵性問題(包括多模態(tài)圖像采集和重建、圖像分割、特征提取和篩選、建立數(shù)據(jù)庫(kù)對(duì)信息分析建模)分別進(jìn)行詳細(xì)的闡述;其次,介紹并分析Radiomics方法在早期預(yù)測(cè)及診斷非小細(xì)胞肺癌、前列腺癌、乳腺癌及其他癌癥方面的應(yīng)用;最后,預(yù)測(cè)Radiomics方法的未來(lái)發(fā)展趨勢(shì)。
[Abstract]:Radiomics (Imaging histology) method refers to extracting quantitative imaging features of a large number of medical images, such as CT,MRI and PET, and finding out the imaging markers of the disease, so as to realize the accurate prediction, diagnosis and prognosis evaluation of the disease. As we all know, cancer treatment is an important problem facing the medical community. Early detection and early treatment can greatly improve the survival rate of patients. Changes in tumor cells are generally monitored by gene expression, but can also be monitored by imaging markers, so Radiomics is widely used in the prediction, early diagnosis and treatment of cancer. It is the research hotspot of imaging medicine and its related specialties at home and abroad. In this paper, the four key problems (including multi-modal image acquisition and reconstruction, image segmentation, feature extraction and selection, and the establishment of database for information analysis and modeling) in Radiomics method are described in detail. Secondly, the application of Radiomics method in early prediction and diagnosis of non-small cell lung cancer, prostate cancer, breast cancer and other cancers is introduced and analyzed. Finally, the future development trend of Radiomics method is predicted.
【作者單位】: 東北大學(xué)中荷生物醫(yī)學(xué)與信息工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(編號(hào):61302013、61372014、81671773、61672146) 遼寧省工業(yè)攻關(guān)及成果產(chǎn)業(yè)化項(xiàng)目(編號(hào):2014305001) 中央高;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(編號(hào):N141008001)~~
【分類號(hào)】:R730.4
本文編號(hào):2444095
[Abstract]:Radiomics (Imaging histology) method refers to extracting quantitative imaging features of a large number of medical images, such as CT,MRI and PET, and finding out the imaging markers of the disease, so as to realize the accurate prediction, diagnosis and prognosis evaluation of the disease. As we all know, cancer treatment is an important problem facing the medical community. Early detection and early treatment can greatly improve the survival rate of patients. Changes in tumor cells are generally monitored by gene expression, but can also be monitored by imaging markers, so Radiomics is widely used in the prediction, early diagnosis and treatment of cancer. It is the research hotspot of imaging medicine and its related specialties at home and abroad. In this paper, the four key problems (including multi-modal image acquisition and reconstruction, image segmentation, feature extraction and selection, and the establishment of database for information analysis and modeling) in Radiomics method are described in detail. Secondly, the application of Radiomics method in early prediction and diagnosis of non-small cell lung cancer, prostate cancer, breast cancer and other cancers is introduced and analyzed. Finally, the future development trend of Radiomics method is predicted.
【作者單位】: 東北大學(xué)中荷生物醫(yī)學(xué)與信息工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(編號(hào):61302013、61372014、81671773、61672146) 遼寧省工業(yè)攻關(guān)及成果產(chǎn)業(yè)化項(xiàng)目(編號(hào):2014305001) 中央高;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(編號(hào):N141008001)~~
【分類號(hào)】:R730.4
【相似文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前3條
1 楊柳;臨床CT圖像中肝臟腫瘤分割研究[D];重慶大學(xué);2013年
2 宗韻;慢性胃炎相關(guān)幾種典型病灶的特征提取與識(shí)別[D];浙江大學(xué);2016年
3 逄敏;乳腺X線圖像腫塊特征提取與特征變換方法研究[D];西安電子科技大學(xué);2015年
,本文編號(hào):2444095
本文鏈接:http://sikaile.net/yixuelunwen/zlx/2444095.html
最近更新
教材專著