高通量藥物篩選識(shí)別秋水仙堿作為甲狀腺癌新型抑制劑的研究
[Abstract]:BACKGROUND & OBJECTIVE: Thyroid carcinoma has become a common and multiple disease. Papillary thyroid carcinoma is the most common type of thyroid cancer, accounting for 85-90% of all types of thyroid cancer. Colorectal cancer, melanoma and other malignant tumors have a high incidence and are new tumor markers, suggesting a poor clinical prognosis. BRAFV600E mutation has the highest incidence in papillary thyroid cancer and has been found in other types of thyroid cancer, such as undifferentiated thyroid cancer. Although the current clinical treatment of papillary thyroid cancer. Surgical resection, endocrine therapy, and radioiodine therapy are the main modalities of carcinomas. However, the prognosis of these traditional therapies is still unsatisfactory for patients with invasive thyroid cancer who are tolerant to radioiodine therapy. BRAFV600E inhibitors such as PLX4032 (vemurafenib) have shown potent antitumor properties in the treatment of melanoma with BRAFV600E gene mutation, while BRAFV600E gene mutation has been shown to be effective in thyroid cancer. Recent studies have shown that BRAFV600E inhibitors can activate BRAFV600E gene mutation in colorectal cancer cells. High phosphorylation of EGFR leads to resistance to BRAF inhibitors. It has been proved that EGFR inhibitors combined with BRAF inhibitors can produce a good synergistic effect. However, the high price of EGFR inhibitors and BRAF inhibitors, as well as their own toxic and side effects, greatly limit the feasibility of clinical application. To find a new drug to replace BRAFV600E inhibitor and study its biological activity and anti-tumor mechanism, so as to lay a foundation for its clinical application in the future.Methods: In order to find a small molecule compound which can inhibit the activity of thyroid cancer cells, we used high-throughput drug screening method to select two kinds of drugs containing BRAFV600E. Human thyroid cancer cell lines 8505C and KTC-1 were selected as the screening targets, while another non-thyroid cancer cell line Malme-3M with BRAFV600E gene mutation was used as the reference. Cell viability was detected by Alamar Blue staining, cell proliferation was detected by cell counting, and the biological characteristics of the drug were determined by flow cytometry; apoptosis was detected by Western blot, Annexin V-FITC and PI double staining combined with flow cytometry; and apoptosis was detected by Western blot. Methods The mechanism of apoptosis induced by colchicine-resistant cells was investigated by establishing stable clone of colchicine-resistant cells. The inoculation model of mouse thyroid cancer cells (8505C and WRO) was established to determine the validity of colchicine in vivo animal test and its toxicity in mice. AV-412, one of the candidate drugs, was validated with PLX4032 for Malme-3M. The results were in good agreement with high throughput screening experiments, which confirmed the reliability and reliability of the system. Colchicine as one of the candidate drugs was the main research object of this project. Colchicine was cocoa through Alamar Blue staining experiment and cell counting experiment. The viability and proliferation of BRAFV600E (8505C, KTC-1) and BRAFWT (WRO, TPC-1) thyroid cancer cells were significantly inhibited by colchicine. Flow cytometry showed that colchicine could induce 8505C and WRO cells to block at G2/M phase, but the number of cells entering G1 phase was significantly decreased. The apoptosis of 8505C and WRO cells induced by colchicine was detected by Annexin V-FITC and PI staining. In 8505C cells, colchicine induced PARP cleavage to form apoptotic fragments in a concentration-and time-dependent manner, and activated AKT, MEK/ERK, P38 and JNK/c-Jun pathways simultaneously. However, selective inhibitors U0126 and SP600125 were used to inhibit MEK1/2 and JNK pathways respectively, interfering with them. In contrast, SB203580 and LY294002 inhibited p38 MAPK and AKT pathways respectively, but had no effect on colchicine-induced apoptosis in WRO cells. The phosphorylation levels of MEK, P38 and JNK/c-Jun were significantly up-regulated. AKT phosphorylation was down-regulated after colchicine treatment for 24 hours, but did not change significantly at 48 and 72 hours, and ERK did not change significantly. The selective inhibitors U0126 and SP600125 were used to treat MEK, respectively. 1/2 and JNK inhibited the ability of colchicine to induce apoptosis, resulting in increased cell viability, decreased the ability of caspase 3 and PARP to form cleavage fragments, and decreased the number of apoptotic cells. SB203580 inhibited the p38 MAPK pathway, only slightly interfered with the ability of colchicine to induce apoptosis. The phosphorylation levels of MEK1/2, ERK1/2 and JNK in the parental cells were significantly higher than those in the drug-resistant cells R2 and R4. The phosphorylation of p38 was different in the drug-resistant cells. The tumor volume and weight in the treatment group were significantly lower than those in the control group, and the tumor volume and weight were in a concentration-and time-dependent manner. The number of mitotic cells in the treatment group was significantly lower than that in the control group, which was concentration-dependent. TUNEL staining showed that the number of apoptotic cells in the treatment group was significantly higher than that in the control group. Conclusion: 1. High-throughput drug screening provides a new platform for characterizing the biological activity of drugs as an effective method. Colchicine, a hot drug, was successfully screened out by high-throughput screening method, and it is also a drug for thyroid cancer. Colchicine can inhibit not only BRAFV600E gene mutation but also other BRAFV600E wild-type thyroid cancers. 3. Colchicine inhibits a variety of thyroid cancers by blocking G2/M cell cycle and inducing apoptosis. Colchicine induces apoptosis by activating MEK/ERK and JNK/c-Jun phosphorylation pathways. The phosphorylation of p38 only partially induces apoptosis in WRO cells, but not in 8505C cells. AKT phosphorylation does not participate in the process of apoptosis. Colchicine has been shown to be effective in inhibiting the growth of transplanted thyroid cancer in 8505C and WRO mice, and has no significant toxic and side effects on animal models.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:R736.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 毛小明,馬開(kāi)宇;秋水仙堿的新用途[J];基層中藥雜志;2001年05期
2 王琦瑋;劉良;黃光照;;秋水仙堿中毒損傷程度鑒定1例[J];法醫(yī)學(xué)雜志;2006年06期
3 曹茂堂;侯均;謝騰芳;王雪榮;趙妮;;復(fù)方秋水仙堿凝膠的制備及臨床觀察[J];中國(guó)醫(yī)院藥學(xué)雜志;2007年10期
4 蔣宇寧;付玲;李茜;;秋水仙提取工藝的研究[J];新疆中醫(yī)藥;2007年06期
5 范洪濤;尤楠;唐世軍;;秋水仙堿分析方法的研究概述[J];化學(xué)研究;2010年04期
6 何海波;張志聞;芮菊華;潘潔;;秋水仙堿治療復(fù)發(fā)性阿弗他潰瘍1年療效觀察[J];中國(guó)實(shí)用口腔科雜志;2012年04期
7 顧茂瑜;;請(qǐng)告知“復(fù)方秋水仙堿注射液”的處方并對(duì)該處方加以分析[J];中國(guó)藥學(xué)雜志;1979年03期
8 ;復(fù)方秋水仙堿注射液藥理實(shí)驗(yàn)結(jié)果[J];天津醫(yī)藥;1973年02期
9 潘立民;;秋水仙堿敏感性作為檢驗(yàn)白血病性淋巴細(xì)胞的方法[J];國(guó)外醫(yī)學(xué)參考資料(內(nèi)科學(xué)分冊(cè));1976年10期
10 涂茂mp,孫桂華,范祥云;四川越西縣產(chǎn)“光菇子”中秋水仙堿的含量變化[J];中藥通報(bào);1983年04期
相關(guān)會(huì)議論文 前6條
1 楊曉玲;郭金耀;;秋水仙堿誘導(dǎo)多倍體玉米技術(shù)研究[A];作物科學(xué)研究理論與實(shí)踐——'2000作物科學(xué)學(xué)術(shù)研討會(huì)文集[C];2001年
2 黃玉榮;李全勝;劉昌孝;;秋水仙堿貼劑的藥代動(dòng)力學(xué)研究[A];第九屆全國(guó)藥物和化學(xué)異物代謝學(xué)術(shù)會(huì)議論文集[C];2009年
3 王莉;李毅;胡艷平;謝小龍;楊建;;HPLC測(cè)定不同處理?xiàng)l件下水母雪蓮中秋水仙堿的含量[A];西北地區(qū)第五屆色譜學(xué)術(shù)報(bào)告會(huì)暨甘肅省第十屆色譜年會(huì)論文集[C];2008年
4 董春雷;蘇秀珍;張文利;;超大劑量秋水仙堿中毒與多器官功能損傷1例的護(hù)理[A];第二十二屆航天醫(yī)學(xué)年會(huì)暨第五屆航天護(hù)理年會(huì)論文匯編(下冊(cè))[C];2006年
5 劉凌;羅祖明;徐嚴(yán)明;雷松;;環(huán)磷酰胺和秋水仙堿聯(lián)合應(yīng)用對(duì)急性缺血性中風(fēng)病人粘附分子的影響[A];第五次全國(guó)中西醫(yī)結(jié)合神經(jīng)科學(xué)術(shù)會(huì)議論文集[C];2004年
6 俞鐘明;樓大鈞;朱麒錢;斯徐偉;;西樂(lè)葆聯(lián)合小劑量秋水仙堿治療痛風(fēng)40例臨床觀察[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)內(nèi)分泌學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 石巴;秋水仙堿的臨床新應(yīng)用[N];中國(guó)醫(yī)藥報(bào);2000年
2 韓詠霞;痛風(fēng)患者不耐受秋水仙堿怎么辦[N];大眾衛(wèi)生報(bào);2006年
3 副主任醫(yī)師 韓詠霞;不耐受秋水仙堿怎么辦[N];醫(yī)藥經(jīng)濟(jì)報(bào);2006年
4 程書權(quán);百年老藥 活力不減[N];醫(yī)藥經(jīng)濟(jì)報(bào);2001年
5 教授 呂群;“是痛風(fēng)就上秋水仙堿”欠妥[N];家庭醫(yī)生報(bào);2003年
6 阿勝;最佳劑量仍難琢磨[N];醫(yī)藥經(jīng)濟(jì)報(bào);2004年
7 董江萍;FDA停止生產(chǎn)銷售秋水仙堿類注射劑[N];中國(guó)醫(yī)藥報(bào);2008年
8 吳遼;CORP研究證實(shí) 秋水仙堿可防止心包炎復(fù)發(fā)[N];中國(guó)醫(yī)藥報(bào);2011年
9 ;抗痛靈治療急性痛風(fēng)性關(guān)節(jié)炎[N];中國(guó)中醫(yī)藥報(bào);2005年
10 保健時(shí)報(bào)特約專家 車會(huì)蓮;通緝蔬菜中的毒素[N];保健時(shí)報(bào);2006年
相關(guān)博士學(xué)位論文 前3條
1 張樂(lè);高通量藥物篩選識(shí)別秋水仙堿作為甲狀腺癌新型抑制劑的研究[D];吉林大學(xué);2016年
2 黃文彥;腎間質(zhì)纖維化的分子機(jī)制探討以及秋水仙堿防治作用的研究[D];南京醫(yī)科大學(xué);2003年
3 王文蘋;秋水仙堿口服緩控釋劑型研究[D];成都中醫(yī)藥大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 肖惠;秋水仙堿配合SrCl_2對(duì)小鼠卵母細(xì)胞去核效果及其機(jī)制研究[D];華中農(nóng)業(yè)大學(xué);2015年
2 劉俊;秋水仙堿治療斯氏貍殖吸蟲感染大鼠肝臟損傷的分子機(jī)制研究[D];昆明醫(yī)科大學(xué);2015年
3 曹福悅;秋水仙堿的電化學(xué)行為及其應(yīng)用研究[D];中南大學(xué);2012年
4 何純蓮;百合中秋水仙堿的分離應(yīng)用研究[D];湖南大學(xué);2003年
5 賀世洪;百合中秋水仙堿及其有效成分分析研究[D];中南大學(xué);2002年
6 李谷才;超臨界流體萃取百合中的秋水仙堿[D];中南大學(xué);2004年
7 杜航航;秋水仙堿對(duì)人瘢痕疙瘩成纖維細(xì)胞的影響[D];重慶醫(yī)科大學(xué);2011年
8 王葉新;局部注射秋水仙堿治療急性痛風(fēng)性關(guān)節(jié)炎的實(shí)驗(yàn)研究[D];重慶醫(yī)科大學(xué);2007年
9 雷三喜;秋水仙堿對(duì)小鼠膠質(zhì)瘤母細(xì)胞抑制作用的體外實(shí)驗(yàn)研究和對(duì)運(yùn)動(dòng)功能的影響[D];昆明醫(yī)學(xué)院;2008年
10 陳雪梅;維吾爾藥材秋水仙體外肝毒性評(píng)價(jià)及其機(jī)制探討[D];新疆大學(xué);2011年
,本文編號(hào):2179091
本文鏈接:http://sikaile.net/yixuelunwen/zlx/2179091.html