天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 醫(yī)學論文 > 腫瘤論文 >

基于SVDD的特征選擇方法研究及其應用

發(fā)布時間:2018-03-15 21:49

  本文選題:支持向量數(shù)據(jù)描述 切入點:特征選擇 出處:《蘇州大學》2015年碩士論文 論文類型:學位論文


【摘要】:在癌癥分類問題中,基因表達數(shù)據(jù)的維數(shù)成千上萬,并且某些特征之間存在相關性。因而如何從大量的高維基因表達數(shù)據(jù)中快速提取出具有有用信息的低維數(shù)據(jù)越來越受到研究人員的關注。本文深入研究了基于支持向量數(shù)據(jù)描述(Support Vector Data Description,SVDD)的特征選擇方法,并將其應用到基因表達數(shù)據(jù)的選擇中,剔除不相關的、冗余基因,保留包含信息量多的基因,從而提高癌癥的分類性能。本文的創(chuàng)新之處在于:提出了一種基于SVDD模型的快速特征選擇算法;谥С窒蛄繑(shù)據(jù)描述的特征選擇方法已經被提出,但是其計算量較大,特征選擇時間過長。針對此問題,本文提出了一種基于支持向量數(shù)據(jù)描述的快速特征選擇算法。新方法的特征選擇是通過對SVDD形成的超球體球心方向上的能量排序來實現(xiàn),并且采用了遞歸特征消除方式來逐漸剔除掉冗余特征。在Leukemia和Colon Tumor數(shù)據(jù)集上的實驗結果表明,新方法能夠快速地進行特征選擇,且所選擇特征對后續(xù)的癌癥分類是有效的。提出了基于多SVDD模型的快速特征選擇算法。上述提到的基于SVDD的特征選擇算法,僅對一類數(shù)據(jù)進行訓練,忽略了其他類別的數(shù)據(jù),只適用于一類或者兩類數(shù)據(jù)。然而,實際生活中多類數(shù)據(jù)更為常見。針對多分類問題,本文提出了一種基于多SVDD的快速特征選擇算法。該算法對每類數(shù)據(jù)建立一個SVDD特征選擇模型,因而可以選擇出多個特征子集,最后將所選擇的特征子集融合起來,得到更有效的特征子集。在兩個兩類癌癥數(shù)據(jù)和三個多類癌癥數(shù)據(jù)集上的實驗驗證了本文方法可以選擇更具有辨別力的特征子集。
[Abstract]:In cancer classification, there are thousands of dimensions of gene expression data. Therefore, how to quickly extract low-dimensional data with useful information from a large number of high-dimensional gene expression data has attracted more and more attention of researchers. The feature selection method of support Vector Data description (SVD) is described by holding vector data. And apply it to the selection of gene expression data, remove irrelevant, redundant genes, and retain genes that contain a lot of information. In order to improve the classification performance of cancer, this paper proposes a fast feature selection algorithm based on SVDD model. The feature selection method based on support vector data description has been proposed, but its computation is large. The feature selection time is too long. In order to solve this problem, a fast feature selection algorithm based on support vector data description is proposed in this paper. The feature selection of the new method is realized by sorting the energy in the direction of the spherical center of the hypersphere formed by SVDD. The recursive feature elimination method is used to eliminate redundant features gradually. Experimental results on Leukemia and Colon Tumor datasets show that the new method can be used to select features quickly. And the selected features are effective for the subsequent cancer classification. A fast feature selection algorithm based on multiple SVDD model is proposed. The feature selection algorithm based on SVDD mentioned above only trains one kind of data and neglects other kinds of data. Only for one or two types of data. However, multi-class data is more common in real life. In this paper, a fast feature selection algorithm based on multiple SVDD is proposed. This algorithm establishes a SVDD feature selection model for each class of data, so that multiple feature subsets can be selected. Finally, the selected feature subsets are fused together. Experimental results on two types of cancer data and three sets of multi-class cancer data show that the proposed method can select more discriminative feature subsets.
【學位授予單位】:蘇州大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:R730.4;TP18

【參考文獻】

相關期刊論文 前1條

1 代琨;于宏毅;李青;;一種基于支持向量機的特征選擇算法[J];模式識別與人工智能;2014年05期



本文編號:1616956

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/zlx/1616956.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶0e7a8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产精品不卡高清在线观看| 91欧美一区二区三区| 免费观看潮喷到高潮大叫 | 国产成人精品在线一区二区三区| 欧洲亚洲精品自拍偷拍| 在线视频免费看你懂的| 国产av一区二区三区四区五区| 亚洲国产另类久久精品| 熟女一区二区三区国产| 国产一区二区三区口爆在线| 久久这里只精品免费福利| 亚洲国产av一二三区| 开心五月激情综合婷婷色| 五月婷日韩中文字幕四虎| 久久精品国产亚洲av久按摩| 中文字幕日韩欧美一区| 日韩国产亚洲欧美另类| 一区二区欧美另类稀缺| 日本淫片一区二区三区| 操白丝女孩在线观看免费高清| 国产午夜精品亚洲精品国产| 精品日韩欧美一区久久| 日韩精品你懂的在线观看| 国产精品午夜福利在线观看| 国产av一区二区三区麻豆| 午夜精品在线视频一区| 欧美日韩有码一二三区| 国产精品欧美一区两区| 日本一二三区不卡免费| 麻豆亚州无矿码专区视频| 伊人色综合久久伊人婷婷| 免费观看一区二区三区黄片| 一二区不卡不卡在线观看| 日本一区二区三区黄色| 日本在线 一区 二区| 欧美大黄片在线免费观看| 亚洲av首页免费在线观看| 欧美人与动牲交a精品| 国产在线一区二区免费| 国语对白刺激高潮在线视频| 国产又粗又长又大高潮视频|