職業(yè)性噪聲聽力損失敏感人群全外顯子SNP特征分析及遺傳易感標志的研究
本文選題:外顯子測序 + 單核苷酸多態(tài)性 ; 參考:《東南大學》2016年碩士論文
【摘要】:噪聲性聽力損失(Noise-induced Hearing Loss, NIHL)是長期接觸有害噪聲引起的進行性感音神經性聽力損傷。NIHL是由環(huán)境因素和遺傳因素交互作用發(fā)生的。以往研究關注較長時間噪聲暴露的遺傳易感性,但我們先期的研究發(fā)現(xiàn),新入職的青年工人,排除其他聽力損失的原因,在職業(yè)噪聲暴露三年內存在聽力損失的風險,為職業(yè)性噪聲暴露的敏感人群。本研究主要探討該NIHL敏感人群的遺傳易感性。首先采用全外顯子組測序法對5例短期內接觸噪聲發(fā)生NIHL的青年工人進行外顯子測序,對比SNP(亞洲人群頻率篩選)數(shù)據(jù)庫,篩選候選的易感SNP位點;進而對候選SNP位點與青年工人較短時間發(fā)生NIHL的相關性進行驗證,并進一步探討候選SNP位點與一般噪聲暴露人群NIHL的相關性;最后通過構建NIHL動物模型,檢測候選SNP的基因在噪聲暴露后mRNA的相對表達水平,以確定靶基因是否在轉錄水平上對噪聲暴露進行應答,在機制上驗證易感性關聯(lián)的可能性。1.噪聲敏感人群的全外顯子組測序及候選SNP篩選對5例噪聲暴露三年內就發(fā)生NEHL的新入職青年工人進行全外顯子組測序,測序過程包括DNA提取、DNA質檢、文庫構建、外顯子區(qū)域捕獲、高通量測序、生物信息學分析。通過比對SNP(亞洲人群頻率篩選)數(shù)據(jù)庫,根據(jù)SNP位點位于外顯子區(qū)域、突變?yōu)榉峭x突變、4個以上測序樣本都發(fā)生突變,而正常漢族人群中等位基因頻率突小于0.2等標準納入目的靶基因。一共篩選出27個SNP位點,其中5個測序樣本都突變的SNP位點有6個,包括TTLL4 rs3731877、STK36rs1344642、BSPH1 rs60213124. HGC6.3 rs76543658、COL28A1 rs6952195、COL28A1 rs55745506。其中TTLL4基因編碼的蛋白是一種催化微管蛋白絡氨酸殘基磷酸化的蛋白,在細胞的生長、繁殖、分化過程中具有重要的作用;STK36基因編碼的蛋白屬于絲氨酸/蘇氨酸激酶家族;STK36基因的缺陷可能導致運動纖毛功能性缺失:BSPH1基因編碼粘附相關蛋白,參與機體能量代謝;基因庫中對于HGC6.3基因尚無明確定義:COL28A1基因編碼的蛋白質屬于膠原蛋白家族,是一種生物性高分子化合物,在人體細胞中扮演結合組織的角色。2.候選SNP與噪聲性聽力損失遺傳易感性的研究2.1外顯子測序目的靶基因位點多態(tài)性與NIHL的相關性分析本研究著重對TTLL4 rs3731877、STK36 rs 1344642、BSPH1 rs60213124等三個SNP位點進行驗證。采用1:1配對病例對照方法,首先以19對接噪工齡小于3年的發(fā)生NIHL的工人和對照為研究對象,應用聚合酶鏈反應和直接測序法,分析候選SNP與NIHL易感性的相關關系;進而以177對發(fā)生NIHL的工人和對照為研究對象,對目的靶基因的多態(tài)性與NIHL易感性進行分析,并對靶基因多態(tài)性與NIHL的相關性進行了年齡、工齡分層分析。研究結果顯示在短期內接觸噪聲發(fā)生NIHL的青年工人中,BSPH1rs60213124位點的G、A等位基因頻率分布在組間存在統(tǒng)計學差異(x2=6.33,P0.05):顯性模型(AA/AG VS.GG)分析結果顯示攜帶AA/AG基因型的個體患NIHL的危險度是攜帶GG基因型個體的7.65倍(OR=7.65,95%CI=1.37-42.71).未發(fā)現(xiàn)BSPH1 rs60213124、TTLL4 rs3731877、STK36 re1344642位點多態(tài)性與其他工齡和年齡組發(fā)生NIHL的相關性。研究結果提示,BSPH1 rs60213124位點可能是短期內接觸噪聲青年工人發(fā)生NIHL的易感基因位點,但結果需要加大樣本量進一步研究。2.2GJB2、NCL、CDH23、PCDH15基因多態(tài)性與NIHL的相關性分析本研究旨在探討GJB2基因rs2274083、rs2284084、rs72474224、NCL基因rs7598759、CDH23基因rs 10999947、PCDH15基因rs4935502、re108252693等位點的多態(tài)性與NIHL的相關性。研究結果表明,GJB2基因rs2274084的基因型分布在兩組組間存在統(tǒng)計學差異(x2=8.51,P=0.014),等位基因分布在兩組間也存在統(tǒng)計學差異(x2=8.06,P=0.005),攜帶CC基因型的個體患NIHL的危險度是攜帶TT基因型個體的2.17倍(OR=2.17,95%CI=1.04-4.53).對該位點進行工齡分層分析,在小于5年工齡組和大于15年工齡組,該位點基因型分布和等位基因頻率分布在病例組和對照組之間均存在統(tǒng)計學差異,并且大于15年工齡組的攜帶CC基因型個體罹患NIHL的危險度要高于小于5年工齡組攜帶CC基因型的個體。CDH23rs10999947位點基因型分布在病例組和對照組之間存在統(tǒng)計學差異(X2=8.82,P=0.01),攜帶GG基因型的個體患NIHL的危險度是AA基因型個體的4.03倍(OR=4.03,95%CI=1.44-11.3)。該位點隱形模型分析結果顯示,攜帶GG/AG基因型的個體患NIHL的危險度是AA基因型個體的4.14倍(OR=4.14,95%CI=1.51-11.34)。對該SNP位點進行人群年齡與工齡分層分析,結果顯示在年齡35-45歲段,該位點多態(tài)性與NIHL存在統(tǒng)計學相關(x2=6.3,P=0.04)。研究結果提示,GJB2基因rs2274084和CDH23基因rS10999947位點可能是NIHL的易感基因位點。3. NIHL動物模型的構建及耳蝸靶基因mRNA表達的檢測采用白噪聲暴露小鼠的方式構建NIHL的動物模型,對小鼠耳蝸內靶基因在噪聲暴露后mRNA相對表達進行檢測,以判斷目的靶基因是否在轉錄水平上在參與了NIHL的發(fā)生過程。ABR檢測結果顯示,噪聲暴露后兩組小鼠聽閾值組間存在統(tǒng)計學差異(P0.05),并且隨著電測聽頻率的升高,聽閾差值存在增大的趨勢;啄や伷梢娫肼暯M小鼠耳蝸毛細胞出現(xiàn)缺損、倒伏嚴重。應用熒光定量PCR對目的靶基因的表達進行檢測,發(fā)現(xiàn)GJB2基因、CDH23基因、PCDH 15基因mRNA的相對表達量組間差異存在統(tǒng)計學差異(P0.05)。而對于其他靶基因,本研究未發(fā)現(xiàn)mRNA表達的差異。結果提示本研究構建NIHL動物模型成功,GJB2基因、CDH23基因、PCDH15基因可能參與了NIHL的發(fā)生過程。4.總結經外顯子測序和比對SNP(亞洲人群頻率篩選)數(shù)據(jù)庫,初步獲得6個可能的青年工人短期內噪聲暴露發(fā)生NIHL的候選SNP位點,經以接噪工齡小于3年發(fā)生NIHL的工人和對照為研究對象,分析候選SNP與NIHL易感性的相關關系,發(fā)現(xiàn)BSPH1rs60213124位點可能是短期內接觸噪聲青年工人發(fā)生NIHL的易感基因位點。對GJB2、NCL、CDH23、PCDH15基因多態(tài)性與NIHL的相關性分析發(fā)現(xiàn)GJB2基因rs2274084和CDH23基因rs10999947位點與NIHL存在著相關性,GJB2基因rs2274084位點的CC基因型和CDH23基因rs10999947位點的GG基因型可能是噪聲性聽力損失的易感基因型。采用白噪聲暴露小鼠的方式成功構建NIHL的動物模型,對靶基因mRNA的表達檢測,發(fā)現(xiàn)GJB2基因、CDH23基因、PCDH 15基因mRNA的相對表達量在噪聲暴露組和對照組之間存在差異,GJB2基因、CDH23基因、PCDH15基因可能在轉錄水平上參與了NIHL的發(fā)生過程。
[Abstract]:Noise induced hearing loss (Noise-induced Hearing Loss, NIHL) is a long-term exposure to noxious noise caused by sexy sound neurogenic hearing impairment..NIHL is caused by the interaction of environmental factors and genetic factors. Previous studies focused on the genetic susceptibility to prolonged exposure to noise, but our previous study found that new recruits were recruited. Workers, excluding other hearing loss, have the risk of hearing loss within three years of occupational noise exposure. This is a sensitive group of occupational noise exposure. This study mainly discusses the genetic susceptibility to the NIHL sensitive population. First, 5 young workers with short term exposure to noise are revealed by the exon sequencing method. Subsequencing and comparing the SNP (Asian population frequency screening) database to screen candidate susceptible SNP loci, and then verify the correlation between the candidate SNP loci and the young workers in the short time of NIHL, and further explore the correlation between the candidate SNP loci and the NIHL in the general noise exposed population. Finally, the NIHL animal model is constructed and the detection weather is detected. The relative expression level of the SNP gene after noise exposure was selected to determine whether the target gene responds to the noise exposure at the transcriptional level, and the possibility of the susceptibility association is verified by the mechanism. The exon sequencing and candidate SNP screening of the.1. noise sensitive population in 5 cases of NEHL in the three year of noise exposure are the new recruits. The whole exon group was sequenced, and the sequencing process included DNA extraction, DNA quality inspection, library construction, exon capture, high throughput sequencing, bioinformatics analysis. By comparing the SNP (Asian population frequency screening) database, the SNP loci in exons were mutated into non synonymous mutations, and more than 4 sequencing samples were mutated, and positive The target gene of secondary gene frequency was less than 0.2 in the Han population. 27 SNP loci were screened out, of which 5 of the sequencing samples had 6 SNP loci, including TTLL4 rs3731877, STK36rs1344642, BSPH1 rs60213124. HGC6.3 rs76543658, COL28A1 rs6952195, and COL28A1 genes encoded eggs White is a protein that catalyzes the phosphorylation of the microtubulin complexate residue, which plays an important role in the growth, reproduction and differentiation of the cells; the protein encoded by the STK36 gene belongs to the serine / threonine kinase family; the defects of the STK36 gene may lead to the functional deletion of the sports cilium: the BSPH1 gene encodes the adhesion related protein and participates in the protein gene The energy metabolism of the body; there is no clear definition of HGC6.3 gene in the gene pool: the protein encoded by the COL28A1 gene belongs to the collagen family, is a biological polymer compound, plays the role of the binding tissue in human cells,.2. candidate SNP and the susceptibility of noise induced hearing loss, 2.1 exon sequencing target Analysis of the correlation between polymorphism of gene locus and NIHL, this study focuses on three SNP loci, such as TTLL4 rs3731877, STK36 RS 1344642, BSPH1 rs60213124 and other SNP loci. In order to analyze the correlation between candidate SNP and NIHL susceptibility, the polymorphism of target gene and NIHL susceptibility were analyzed with 177 pairs of NIHL workers and controls, and the correlation between target gene polymorphism and NIHL was analyzed. Among young workers who were born with NIHL, the frequency distribution of G and A alleles at the BSPH1rs60213124 locus was statistically different (x2=6.33, P0.05). The dominant model (AA/AG VS.GG) analysis showed that the risk of NIHL with AA/AG genotype was 7.65 times as large as that of the GG genotype (OR=7.65,95%CI=1.37-42.71). 13124, TTLL4 rs3731877, STK36 re1344642 locus polymorphism is associated with the occurrence of NIHL in other working age groups and age groups. The results suggest that BSPH1 rs60213124 loci may be a susceptible gene locus for NIHL in young workers exposed to noise in the short term, but the results need to be increased to further study.2.2GJB2, NCL, CDH23, PCDH15 gene polymorphism. The correlation analysis between sex and NIHL was aimed at exploring the correlation between the polymorphism of the GJB2 gene rs2274083, rs2284084, rs72474224, NCL gene rs7598759, CDH23 gene RS 10999947, PCDH15 gene rs4935502, re108252693 and other loci. X2=8.51, P=0.014), the distribution of alleles in the two groups was also statistically different (x2=8.06, P=0.005), and the risk of NIHL with the CC genotype was 2.17 times that of the TT genotype (OR=2.17,95%CI=1.04-4.53). The distribution and allele frequency distribution were statistically different between the case group and the control group, and the risk degree of NIHL in the CC genotype individuals with the 15 year old group was higher than that of the individuals carrying the CC genotype in the group less than 5 years old. The genotype distribution of the.CDH23rs10999947 loci of the individuals carrying the CC genotype was statistically significant between the case group and the control group. X2=8.82 (P=0.01), the risk degree of NIHL in individuals carrying GG genotype was 4.03 times (OR=4.03,95%CI=1.44-11.3) of AA genotype individuals. The stealth model analysis showed that the risk of NIHL in individuals carrying the GG/AG genotype was 4.14 times (OR=4.14,95%CI=1.51-11.34) for AA genotype individuals. Age and age stratification analysis showed that the polymorphism of the site was statistically related to NIHL (x2=6.3, P=0.04) at age 35-45 years. The results suggest that the rS10999947 locus of the GJB2 gene rs2274084 and CDH23 gene may be the construction of the.3. NIHL animal model of the susceptible gene locus of NIHL and the detection of the mRNA expression of the cochlear target gene. The animal model of NIHL was constructed by noise exposed mice, and the relative expression of mRNA in the mouse cochlea target gene was detected after noise exposure to determine whether the target gene was involved in the transcription of NIHL at the transcriptional level and.ABR detection results showed that there was a statistical difference between the two groups of hearing threshold groups after the noise exposure (P0.05). And with the increase of the frequency of electrical audiometry, the difference of hearing threshold increased. The cochlear hair cells in the group of basal membrane were visible and the lodging was serious. The expression of target gene was detected by fluorescence quantitative PCR. The difference of the relative expression of the relative expression of the GJB2 gene, CDH23 gene and PCDH 15 gene mRNA was found to be statistically significant. P0.05. But for other target genes, there is no difference in the expression of mRNA in this study. The results suggest that the NIHL animal model is successful in this study. The GJB2 gene, CDH23 gene, and PCDH15 gene may be involved in the occurrence of NIHL,.4. summarizes the exon sequencing and compares SNP (Asian population frequency screening) database, initially obtaining 6 possible In the short term, young workers exposed to the candidate SNP loci of NIHL, the workers and controls who were less than 3 years older than 3 years, analyzed the correlation between the candidate SNP and the NIHL susceptibility, and found that the BSPH1rs60213124 locus may be the susceptible gene locus of NIHL in young workers exposed to noise in the short term. For GJB2, NCL, CDH23. The correlation analysis between PCDH15 gene polymorphism and NIHL found that there was a correlation between the rs10999947 locus of the GJB2 gene rs2274084 and CDH23 gene and NIHL. The CC genotypes of the rs2274084 locus of the GJB2 gene and the CDH23 gene rs10999947 loci may be the susceptible genotypes of noise induced hearing loss. The animal model of NIHL was constructed and the expression of the target gene mRNA was detected. The relative expression of the GJB2, CDH23 and PCDH 15 gene mRNA was found to be different between the noise exposed group and the control group. The GJB2, CDH23, and PCDH15 genes may be involved in the occurrence of NIHL at the transcription level.
【學位授予單位】:東南大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:R135.8
【相似文獻】
相關期刊論文 前10條
1 劉蓬;阮紫娟;龔慧涵;郭恩欽;;262例耳鳴患者聽力損失情況的臨床調查[J];中華耳科學雜志;2009年03期
2 薛來俊;張大軍;閆玲;李理;王紅敏;葉洋;;噪聲聽力損失與血液中某些金屬離子的關系[J];職業(yè)與健康;2013年01期
3 張曉紅,王振菊,王春麗;外傷性聽力損失的綜合評估[J];山東醫(yī)藥;2002年22期
4 高磊,薛飛,王錦玲;畸變產物耳聲發(fā)射在非器質性聽力損失的應用114例[J];第四軍醫(yī)大學學報;2002年19期
5 王緒銳;照射耳聽力損失的機制:一項長期的縱向研究[J];國外醫(yī)學(耳鼻咽喉科學分冊);2003年03期
6 岳鳳樞,蘇蘭欣,吳鳳嬌,張燕,賈滿生,趙建彬,王增勤;華北地區(qū)火電廠職工聽力損失現(xiàn)狀調查[J];中國聽力語言康復科學雜志;2004年01期
7 林倩,宮露霞,劉玉俊,聶文英,相麗麗,李應會,李慧,戚以勝,梁傳余;先天性聽力損失的確診和隨訪及病因分析[J];中華耳鼻咽喉科雜志;2004年11期
8 王杰,黃維國;嬰幼兒聽力損失的醫(yī)學評價[J];聽力學及言語疾病雜志;2005年05期
9 劉琳;楊杪;譚皓;鄭建如;馮友梅;鄔堂春;;熱休克轉錄因子2基因多態(tài)性與噪聲性聽力損失易感性的關系[J];中國康復;2005年06期
10 David JIANG;鄒凌;;老年聽力損失現(xiàn)狀和干預策略[J];中國聽力語言康復科學雜志;2006年01期
相關會議論文 前10條
1 徐飛;;聽力損失的重新定義[A];中醫(yī)耳鼻喉學術傳承與研究論文匯編[C];2009年
2 吳銘權;崔博;佘曉俊;;抗氧化劑在噪聲性聽力損失中的保護作用[A];中國營養(yǎng)學會特殊營養(yǎng)第七屆學術會議會議資料匯編[C];2009年
3 徐飛;;聽力損失的重新定義[A];第15屆全國中醫(yī)耳鼻喉科學術研討和繼續(xù)教育年會論文匯編[C];2009年
4 胥科;王愷;孟娟;孟照莉;陶勇;鄭蕓;;非綜合征型遺傳性聽力損失的治療研究進展[A];中華醫(yī)學會第十次全國耳鼻咽喉-頭頸外科學術會議論文匯編(下)[C];2007年
5 徐飛;;聽力損失的重新定義[A];中華中醫(yī)藥學會耳鼻喉科分會第15屆學術交流會論文集[C];2009年
6 王秋菊;縱亮;袁虎;李慶忠;趙亞麗;蘭蘭;郭維維;翟所強;楊偉炎;韓東一;;遲發(fā)型聽力損失的臨床聽力學評估及相關基因研究[A];中華醫(yī)學會第十次全國耳鼻咽喉-頭頸外科學術會議論文匯編(上)[C];2007年
7 郭恩欽;劉蓬;安玲玲;;耳鳴頻率與蝸性聽力損失的相關性研究[A];世界中聯(lián)耳鼻喉口腔專業(yè)委員會換屆大會及第三次學術年會暨中華中醫(yī)藥學會耳鼻喉科分會第十七次學術交流會暨廣東省中醫(yī)及中西醫(yī)結合學會耳鼻喉科學術交流會論文匯編[C];2011年
8 鄒廣華;李彥華;徐紅霞;;新疆部分聾校及語訓學校學生聽力損失的流行病學調查[A];中華中醫(yī)藥學會耳鼻喉科分會第15屆學術交流會論文集[C];2009年
9 王碩;徐立;董瑞娟;王媛;;感音神經性聽力損失人群使用聲音信息感知漢語聲調的能力[A];全國耳鼻咽喉頭頸外科中青年學術會議論文匯編[C];2012年
10 趙英;舒瓊;韓濟生;;探索星狀神經節(jié)阻滯配合韓氏儀對突發(fā)性耳聾導致的聽力損失的康復作用[A];中國康復醫(yī)學會第四屆會員代表大會暨第三屆中國康復醫(yī)學學術大會論文匯編[C];2001年
相關重要報紙文章 前10條
1 張晨;聽力損失,,現(xiàn)代人需要了解的話題[N];新華日報;2006年
2 黃敏;腭裂患兒防聽力損失[N];大眾衛(wèi)生報;2009年
3 北京同仁醫(yī)院 北京市耳鼻咽喉科研究所主任醫(yī)師 莫玲燕;耳鳴病因復雜[N];光明日報;2010年
4 北京市耳鼻咽喉科研究所 首都醫(yī)科大學附屬北京同仁醫(yī)院 韓德民 黃麗輝;對所有小寶寶都要查聽力[N];保健時報;2006年
5 鎮(zhèn)江市第二人民醫(yī)院耳鼻喉科主任 陳志強;小心噪音傷耳[N];鎮(zhèn)江日報;2008年
6 李新萍;兒童聽力障礙要早治[N];光明日報;2008年
7 中國聾兒康復中心主任醫(yī)師 孫喜斌;新生寶寶都該查聽力[N];健康報;2011年
8 李水銀;藥物耳毒性反應不可小覷[N];醫(yī)藥經濟報;2000年
9 高莎;共同關愛無聲世界的人們[N];工人日報;2005年
10 本報記者 戴岱;告別無聲世界聆聽你的成長[N];中國消費者報;2013年
相關博士學位論文 前7條
1 袁虎;非綜合征型遺傳性聽力損失家系致病基因定位克隆研究[D];中國人民解放軍軍醫(yī)進修學院;2006年
2 縱亮;遲發(fā)型聽力損失的分子遺傳機制研究[D];中國人民解放軍軍醫(yī)進修學院;2007年
3 劉穹;非綜合征型遺傳性聽力損失家系致病基因定位克隆研究[D];中國人民解放軍軍醫(yī)進修學院;2009年
4 劉巖;低頻波動性聽力損失自我檢測軟件與低壓艙治療的研發(fā)和臨床應用研究[D];中國人民解放軍醫(yī)學院;2015年
5 汪芹;增齡相關聽力損失及卡那霉素致聾大鼠耳蝸TMPRSS3、ENaC-α基因表達的初步研究[D];中南大學;2010年
6 林倩;新生兒及嬰兒的聽覺特性與山東地區(qū)耳聾熱點基因突變及其聽力學表現(xiàn)的研究[D];山東大學;2010年
7 徐百成;基于西北少數(shù)民族的聾病資源庫構建及基因診斷策略研究[D];蘭州大學;2014年
相關碩士學位論文 前10條
1 李艷紅;職業(yè)性噪聲聽力損失與HSP70基因單核苷酸多態(tài)性的關系[D];鄭州大學;2015年
2 張鵬;天津薊縣農村中老年人聽力損失致病因素分析[D];天津醫(yī)科大學;2015年
3 談柯宏;職業(yè)性噪聲聽力損失的遺傳易感性研究[D];東南大學;2015年
4 陶珊;發(fā)育早期噪聲性聽力損失對認知功能的長期影響和可能機制[D];東南大學;2015年
5 周瓊瓊;HDAC2對豚鼠急性聽力損失治療中糖皮質激素抵抗影響的研究[D];南京大學;2016年
6 齊明鍵;凋亡相關基因多態(tài)性及環(huán)境行為因素與噪聲性聽力損失的關聯(lián)研究[D];石河子大學;2016年
7 于德財;職業(yè)性噪聲聽力損失敏感人群全外顯子SNP特征分析及遺傳易感標志的研究[D];東南大學;2016年
8 林倩;嬰幼兒先天性聽力損失的早期診斷和干預及其隨訪策略[D];四川大學;2004年
9 邱芬芳;聽力損失對腭裂術后患者漢語語音影響的研究[D];南京醫(yī)科大學;2013年
10 楊靜;耳鳴性質及聽力損失對耳鳴患者生活影響的分析[D];天津醫(yī)科大學;2013年
本文編號:1911896
本文鏈接:http://sikaile.net/yixuelunwen/yufangyixuelunwen/1911896.html