電化學(xué)傳感器應(yīng)用于環(huán)境雌激素—壬基酚檢測的研究
本文選題:傳感器 + 壬基酚 ; 參考:《華中科技大學(xué)》2012年碩士論文
【摘要】:社會快速進(jìn)步、工業(yè)生產(chǎn)迅猛發(fā)展的同時,也給人類的生活帶來了越來越多的負(fù)面影響。近年來,化學(xué)污染問題日趨嚴(yán)重,各大環(huán)境問題也被頻頻曝光。壬基酚(NP)作為公認(rèn)的環(huán)境內(nèi)分泌干擾物(EEDs),其危害已經(jīng)引起全世界的廣泛關(guān)注。壬基酚一旦被排入環(huán)境當(dāng)中,便會長時間存在,并通過生物蓄積作用以及食物鏈作用將其危害傳遞、放大。因此建立壬基酚的分析方法對研究其生理作用及制定環(huán)境衛(wèi)生標(biāo)準(zhǔn)都有著極其重要的意義。在眾多的檢測手段當(dāng)中,電化學(xué)方法因其響應(yīng)迅速、選擇性好、靈敏度高、所需儀器價廉、操作簡便、無需復(fù)雜的樣品前處理過程等而倍受青睞。本論文致力于開發(fā)簡單、靈敏的電化學(xué)傳感器并將其應(yīng)用于水環(huán)境和食品相關(guān)方面的壬基酚的檢測。本論文主要包括以下兩方面內(nèi)容: 第一部分:壬基酚在多壁碳納米管-雙十六烷基磷酸復(fù)合膜修飾電極上的電化學(xué)行為及其測定 本部分利用多壁碳納米管(MWNTs)與雙十六烷基磷酸(DHP)混合形成復(fù)合膜,覆蓋于玻碳電極(GCE)表面來制備直接檢測NP的電化學(xué)傳感器。經(jīng)過酸處理的MWNTs表面帶有負(fù)電荷,容易發(fā)生團(tuán)聚,使其表面的活性位點被覆蓋掉。DHP分子結(jié)構(gòu)中帶有一個親水性基團(tuán)和一對疏水性基團(tuán)(C-H鏈),其表面亦帶有負(fù)電荷。當(dāng)DHP與MWNTs混合后,會對MWNTs起到分散作用,使MWNTs表面因團(tuán)聚覆蓋掉的活性位點暴露出來,增強(qiáng)NP在修飾電極表面的電化學(xué)響應(yīng)。通過條件優(yōu)化,該傳感器對NP響應(yīng)的線性范圍在2.0×10~(-6)mol/L~2.6×10~(-5)mol/L,檢測限達(dá)6.0×10~(-7)mol/L,應(yīng)用于環(huán)境水質(zhì)樣品中NP的測定,其結(jié)果與高效液相色譜法(HPLC)所得結(jié)果一致。 第二部分:基于十六烷基三甲基溴化銨修飾碳糊電極的壬基酚電化學(xué)傳感器 本部分利用陽離子表面活性劑十六烷基三甲基溴化銨(CTAB)在碳糊電極表面吸附形成CTAB單分子層來制備電化學(xué)傳感器,增強(qiáng)壬基酚的電化學(xué)響應(yīng)。將石墨粉與粘合劑石蠟油混合制備成碳糊(CP),石蠟油是疏水性粘合劑,,一般對溶液中親水性物質(zhì)富集效果較差。通過CTAB長鏈與碳糊中石蠟油的疏水作用,CTAB在電極表面形成穩(wěn)定的單分子層。CTAB的疏水特性不但可以改變電極/溶液界面的電化學(xué)性能,而且可以增強(qiáng)NP在電極表面的吸附性。實驗采用了攪拌的方法進(jìn)一步增加電極對壬基酚的富集速率,大大縮短了檢測時間。在最佳的實驗條件下,該電化學(xué)傳感器對壬基酚有良好的響應(yīng),其線性范圍在1.0×10-7mol/L~2.5×10~(-5)mol/L,檢測限達(dá)1.0×10~(-8)mol/L。除了具有令人滿意的重現(xiàn)性和穩(wěn)定性之外,該方法成功的應(yīng)用于聚氯乙烯(PVC)樣品的分析,結(jié)果與HPLC法相吻合。
[Abstract]:With the rapid progress of society and the rapid development of industrial production, it has brought more and more negative effects to human life. In recent years, the problem of chemical pollution is becoming more and more serious. As a recognized environmental endocrine disruptor, nonylphenol (NPN) has attracted worldwide attention. Once the nonylphenol is discharged into the environment, it will exist for a long time, and it will be transmitted and amplified by bioaccumulation and food chain action. Therefore, it is of great significance to establish the analytical method of nonylphenol to study its physiological function and to establish environmental hygiene standards. Among the many detection methods, electrochemical method is popular because of its rapid response, good selectivity, high sensitivity, cheap instrument, simple operation and no complicated sample pretreatment process. In this paper, a simple and sensitive electrochemical sensor is developed and applied to the detection of nonylphenol in water environment and food. This thesis mainly includes the following two aspects: The first part: electrochemical behavior and determination of nonylphenol on multiwalled carbon nanotube-cetylphosphoric acid composite film modified electrode In this part, multiwalled carbon nanotubes (MWNTs) and hexadecyl phosphate (DHP) were mixed to form a composite membrane, which was coated on the surface of glassy carbon electrode (GCEE) to prepare electrochemical sensors for direct detection of NP. The surface of acid-treated MWNTs has negative charge and is easy to agglomerate. The active sites on the surface of MWNTs are covered with a hydrophilic group and a pair of hydrophobic groups. When DHP and MWNTs were mixed, MWNTs was dispersed, the active sites of MWNTs surface were exposed by agglomeration, and the electrochemical response of NP on the surface of modified electrode was enhanced. The linear range of NP-response of the sensor is 2.0 脳 10~(-6)mol/L~2.6 脳 10 ~ (10) ~ (-5) mol 路L ~ (-1), and the detection limit is 6.0 脳 10 ~ (10) ~ (-7) mol / L, which has been applied to the determination of NP in environmental water samples. The results are in agreement with those obtained by high performance liquid chromatography (HPLC). Part two: nonylphenol Electrochemical Sensor based on Cetyltrimethylammonium bromide modified carbon paste electrode In this part, CTAB monolayers were prepared by cationic surfactant cetyltrimethylammonium bromide (CTAB) adsorbed on the surface of carbon paste electrode to enhance the electrochemical response of nonylphenol. Carbon paste was prepared by mixing graphite powder with binder paraffin oil, which is a hydrophobic binder and has poor enrichment effect on hydrophilic substances in solution. Through the hydrophobic interaction between CTAB long chain and paraffin oil in carbon paste, the hydrophobic properties of monolayer. CTAB formed on the electrode surface can not only change the electrochemical performance of the electrode / solution interface, but also enhance the adsorption of NP on the electrode surface. The agitation method was used to further increase the enrichment rate of nonylphenol and shorten the detection time. Under the optimum experimental conditions, the electrochemical sensor has a good response to nonylphenol. The linear range is 1.0 脳 10-7mol/L~2.5 脳 10 ~ (10) ~ (-5) mol / L, and the detection limit is 1.0 脳 10 ~ (-1) ~ (-8) 渭 mol 路L ~ (-1) 路L ~ (-1). In addition to the satisfactory reproducibility and stability, the method has been successfully applied to the analysis of PVC / PVC samples. The results are in good agreement with the HPLC method.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP212.2;R134.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃振軍;我國壬基酚的生產(chǎn)與發(fā)展[J];精細(xì)化工;2000年10期
2 邱麗偉,董明云,王輝;壬基酚及其雜質(zhì)的含量測定[J];石油化工;2000年04期
3 高旺;耐高溫催化劑及其在壬基酚中應(yīng)用項目通過鑒定[J];現(xiàn)代化工;2000年04期
4 夏茵茵;壬基酚對機(jī)體影響的研究進(jìn)展[J];國外醫(yī)學(xué).衛(wèi)生學(xué)分冊;2004年03期
5 韓巨巖,王文濤,岳長進(jìn);壬基酚磺酸合成工藝研究[J];吉林化工學(xué)院學(xué)報;1998年01期
6 賈麗華,郭祥峰,陳華群,陸銘;壬基酚為原料合成雙季銨鹽[J];精細(xì)化工;2001年10期
7 龔延龍,胡旭;淺析壬基酚的產(chǎn)品質(zhì)量中色澤的控制[J];江蘇化工;2001年02期
8 周鴻,張曉健,胡建英,金芬,林愛武,樊康平,王占生;飲用水中壬基酚及其前體物的分布特性[J];環(huán)境與健康雜志;2004年05期
9 ;黑龍江石化啟動壬基酚擴(kuò)建工程[J];石油煉制與化工;2005年05期
10 王福海,周合云,劉岳峰,王家俊,張志軍;正構(gòu)壬醇與苯酚的烷基化反應(yīng)歷程及其產(chǎn)物壬基酚組份的研究[J];精細(xì)化工;1986年01期
相關(guān)會議論文 前10條
1 鞏秀玉;賈曉平;陳海剛;馬勝偉;張U
本文編號:1794653
本文鏈接:http://sikaile.net/yixuelunwen/yufangyixuelunwen/1794653.html