建筑材料致居民輻射劑量模型及氡射氣系數(shù)快速測(cè)量方法研究
本文選題:建筑材料 切入點(diǎn):居民輻射劑量模型 出處:《中國(guó)疾病預(yù)防控制中心》2014年博士論文 論文類型:學(xué)位論文
【摘要】:背景 近年來(lái),隨著我國(guó)工業(yè)化和城鎮(zhèn)化進(jìn)程的不斷加快,建材的需求量越來(lái)越大。此外,“節(jié)能減排、保護(hù)資源”等政策的實(shí)施,導(dǎo)致?lián)皆、多孔的新型建材迅速發(fā)展,并廣泛應(yīng)用于房屋建造。然而,由于制造工藝、生產(chǎn)原料等的巨大變化,新型建材的密度、厚度以及氡射氣系數(shù)也與傳統(tǒng)建材產(chǎn)生較大差別,可能導(dǎo)致利用傳統(tǒng)的建材致居民輻射劑量模型估算的居民劑量負(fù)擔(dān)產(chǎn)生一定的偏差,不利于有效保護(hù)居民健康,也可能阻礙新型建材的科學(xué)發(fā)展和工業(yè)廢渣的合理利用。 目的 研究、分析建材的密度、厚度、類型以及居室內(nèi)劑量參考點(diǎn)、氡射氣系數(shù)等參數(shù)對(duì)估算建材致居民輻射劑量的影響,確定權(quán)重大的影響參數(shù)并探討修正方法,統(tǒng)籌考慮內(nèi)、外照射劑量,建立一種新的建材致居民輻射劑量模型,以更準(zhǔn)確評(píng)價(jià)建材放射性危害。對(duì)引入模型中的氡射氣系數(shù),研究建立一種快速測(cè)量方法,以提高檢測(cè)效率。研究加氣混凝土砌塊的氡射氣系數(shù)隨含水率、溫度和濕度的變化規(guī)律。 方法 (1)基于Monte Carlo方法,利用MCNPX程序,建立典型的居室結(jié)構(gòu)(4m×5m×2.8m,帶門窗),在居室4面墻、底和頂分別填充不同類型、密度和厚度的建材時(shí),模擬計(jì)算居民比有效劑量率。利用非線性回歸分析,擬合居民比有效劑量率與表面密度的關(guān)系函數(shù),從而建立一種新的建材致居民外照射劑量模型,并通過(guò)現(xiàn)場(chǎng)測(cè)量驗(yàn)證可靠性。通過(guò)對(duì)建材中氡輸運(yùn)機(jī)理進(jìn)行分析,獲得室內(nèi)氡濃度與建材氡射氣系數(shù)、密度和厚度的函數(shù)關(guān)系,建立建材致居民內(nèi)照射劑量估算模型。 (2)通過(guò)對(duì)氡射氣在建材內(nèi)部和密閉腔體中輸運(yùn)規(guī)律的分析,推導(dǎo)氡射氣系數(shù)快速測(cè)量的數(shù)學(xué)方程。以加氣混凝土砌塊為研究對(duì)象,利用連續(xù)測(cè)氡儀、密閉腔體和真空封泥等,確定最優(yōu)化測(cè)量時(shí)間、分析樣品厚度的影響以及該方法的復(fù)現(xiàn)性。通過(guò)與標(biāo)準(zhǔn)的長(zhǎng)時(shí)間累積測(cè)量法進(jìn)行比對(duì),驗(yàn)證快速測(cè)量方法的可靠性。 (3)根據(jù)建立的氡射氣快速測(cè)量方法,測(cè)量加氣混凝土砌塊的氡射氣系數(shù)在不同含水率(0%、2%、5%、10%、20%、25%、30%、35%、40%、45%、53%和60%)、溫度(10、17、20、25、30、35和40℃)和相對(duì)濕度(12%、33%、60%、79%和95%)條件下的氡射氣系數(shù);并對(duì)氡射氣系數(shù)的測(cè)量結(jié)果進(jìn)行回歸分析,探討氡射氣系數(shù)與含水率、溫度和濕度的變化規(guī)律。 結(jié)果 (1)建材的類型、室內(nèi)劑量參考點(diǎn)位置對(duì)居民劑量無(wú)顯著性影響。建材的厚度、密度和氡射氣系數(shù)對(duì)居民輻射劑量影響較為顯著,應(yīng)進(jìn)行修正。建材中40K、238U系和232Th系放射性核素致居民外照射比有效劑量率隨著建材表面密度(密度與厚度的乘積)的增加呈對(duì)數(shù)型增長(zhǎng)。 (2)統(tǒng)籌考慮建材致居民內(nèi)、外照射劑量,引入厚度、密度、氡射氣系數(shù),建立了建材致居民輻射劑量模型: 式中,E為建材致居民有效劑量率,nSv·h-1;Ck,CRa和CTh分別為建材中40K、238U系和232Th系放射性核素致居民比有效劑量率值,(nSv·h-1).(Bq·kg-1)-1; Ak、AR。和ATh分別為建材中40K、226Ra和232Th的比活度,Bq.kg-1;ε為建材氡射氣系數(shù);Ρ為建材密度,kg·m-3;d為建材厚度,m。 其中,外照射劑量模型經(jīng)現(xiàn)場(chǎng)測(cè)量驗(yàn)證,具有較好的可靠性。 (3)建材氡射氣系數(shù)的快速測(cè)量研究中,24-60h的測(cè)量結(jié)果較穩(wěn)定,可作為最優(yōu)化測(cè)量時(shí)間。6次重復(fù)測(cè)量結(jié)果的平均值±標(biāo)準(zhǔn)偏差為0.153±0.007,變異系數(shù)為4.6%,表明具有較好的重復(fù)性。在樣品厚度小于氡擴(kuò)散長(zhǎng)度的0.4倍時(shí),不同厚度樣品的測(cè)量結(jié)果沒(méi)有顯著性差異(P0.05)。氡射氣系數(shù)的快速測(cè)量結(jié)果與標(biāo)準(zhǔn)累積測(cè)量結(jié)果沒(méi)有顯著性差異(P0.05)。 (4)加氣混凝土砌塊的氡射氣系數(shù)隨著其含水率的增加呈對(duì)數(shù)型增長(zhǎng):ε=0.096.1n(s+2.43)+0.037(R2=0.952);加氣混凝土砌塊的氡射氣系數(shù)隨著其含水率的增加呈線性增長(zhǎng):ε=0.00245.T+0.0601(R2=0.987);不同濕度下,加氣混凝土的氡射氣系數(shù)測(cè)量結(jié)果無(wú)顯著性差異(P0.05)。 結(jié)論 本課題通過(guò)分析建材厚度、密度和氡射氣系數(shù)等對(duì)建材致居民輻射劑量模型的影響,確定權(quán)重大的影響參數(shù)并探討修正方法,統(tǒng)籌考慮居民所受內(nèi)、外照射劑量,建立一種新的建材致居民輻射劑量模型。所建劑量模型可更合理、準(zhǔn)確估算建材致居民輻射劑量,為評(píng)價(jià)建材放射性危害提供劑量學(xué)基礎(chǔ);指導(dǎo)建材安全選用,為制、修訂建材放射性危害評(píng)價(jià)與控制體系提供科學(xué)依據(jù);在有效保護(hù)居民身體健康的同時(shí),也可促進(jìn)新型建筑材料的科學(xué)發(fā)展、工業(yè)廢渣的合理利用。 研究建立建材氡射氣系數(shù)的快速測(cè)量方法,較大縮短測(cè)量時(shí)間?商岣邫z測(cè)效率、降低檢測(cè)成本,在促進(jìn)輻射防護(hù)檢測(cè)技術(shù)發(fā)展的同時(shí),也是新建劑量模型在實(shí)際中推廣應(yīng)用的一種有益補(bǔ)充。
[Abstract]:background
In recent years, with China's industrialization and urbanization continues to accelerate, more and more demand for building materials. In addition, the implementation of energy-saving emission reduction, resource conservation and other policies, lead slag, porous new building materials is developing rapidly, and is widely used in building construction. However, due to the manufacturing process, great changes in production raw materials, new building materials of the density, thickness and radon emanation coefficient have great difference with the traditional building materials, may lead to dose burden using traditional building materials to residents of radiation dose estimation model has certain deviation, is not conducive to the effective protection of the health of residents, rational use of new building materials may also hinder the development of science and industrial waste residue.
objective
Study on the analysis of building materials, density, thickness, type and room dose reference point, effect of radon emanation coefficient on the estimation of building materials to residents of the radiation dose, and to explore the correct method to determine the parameters of right significant impact on overall consideration, the dose of external irradiation, the establishment of a new residential building materials induced by radiation dose model. In order to more accurately evaluate the hazards of radioactive materials. The introduction of radon emanation coefficient in the model, study the establishment of a fast measurement method to improve the detection efficiency. The radon emanation coefficient of aerated concrete block with moisture content, temperature and humidity.
Method
(1) Monte Carlo based on the method of using the MCNPX program, a typical structure of the room (4m * 5m * 2.8m, with windows and doors), in room 4 wall, bottom and top are respectively filled with different types, density and thickness of materials, simulation of residents than the effective dose rate. By using nonlinear regression analysis, fitting residents than the relationship between the effective dose rate function and surface density, thus establishing a kind of new building materials to the residents of the external dose model, and through the field measurement reliability. Through the analysis of the mechanism of transport transport of radon in building materials, building materials for indoor radon and radon emanation coefficient, the function relationship between the density and thickness of the building, building materials the resident internal dose estimation model.
(2) based on the analysis of radon transport rule in building materials inside and in a sealed cavity, the mathematical equations are fast measurement of radon emanation coefficient. The aerated concrete block as the research object, using continuous radon measurement instrument, a sealed cavity and vacuum cement, determine the optimal measurement, analysis of influence of the thickness of the sample and the reproducibility of the method. By comparison with the standard long time cumulative measurement method, the reliability of rapid measurement method of verification.
(3) according to the rapid measurement method of radon establishment, radon emanation coefficient measurement of aerated concrete block in different water content (0%, 2%, 5%, 10%, 20%, 25%, 30%, 35%, 40%, 45%, 53% and 60% (10,17,20,25,30,35), temperature and relative humidity (40 DEG C) and 12% 33%, 60%, 79%, and 95%) radon emanation coefficient conditions; and the measurement results of radon emanation coefficient of regression analysis on coefficient of gas and water radon emission rate, temperature and humidity.
Result
(1) the type of building materials, indoor location dose reference point has no significant impact on the residents' dose. The thickness of building materials, and the density of radon emanation coefficient of residents radiation dose more significant effect, should be corrected. The building of 40K, 238U and 232Th radionuclide induced by external irradiation than residents effective dose rate with the density of building materials the surface (the product of density and thickness) showed a logarithmic growth.
(2) the radiation dose model of building materials is established by considering the dosage of building materials, the dose of external irradiation, and the introduction of thickness, density and radon ejection coefficient.
In the formula, E is building the resident effective dose rate, nSv, H-1; Ck, CRa and CTh respectively in building materials 40K, 238U and 232Th induced by radionuclide residents than the effective dose rate values (nSv, h-1). (Bq, kg-1) -1; Ak, AR. and ATh respectively in building materials 40K, 226Ra and 232Th than live, Bq.kg-1; E as building materials radon emanation coefficient; P for building density, kg, M-3; D for building materials thickness, M.
Among them, the external irradiation dose model is verified by field measurement, and it has good reliability.
(3) measurement of building materials radon emanation coefficient in the measurement results of 24-60h was stable, the average value can be used as optimal measuring time.6 repeated measurements. The standard deviation was 0.153 + 0.007, the coefficient of variation was 4.6%, show that it has good repeatability. At 0.4 times the thickness of the sample is less than the length of the radon diffusion when the measurement results of samples with different thickness had no significant difference (P0.05). The results of rapid measurement of radon emanation coefficient and cumulative measurement results of no significant difference (P0.05).
(4) the radon emanation coefficient of the aerated concrete block with the increase of water content in logarithm growth: epsilon =0.096.1n (s+2.43) +0.037 (R2=0.952); radon emanation coefficient of the aerated concrete block grows linearly with increase in moisture content: epsilon =0.00245.T+0.0601 (R2=0.987); under different humidity, no significant difference radon emanation coefficient measurement results of aerated concrete (P0.05).
conclusion
This paper analyzes the influence of building material thickness, density and radon emanation coefficient caused by the radiation dose model of building materials for the residents, and to explore the correct method to determine the parameters of the right to the major influence, residents and consider the internal and external exposure dose, the establishment of a new residential building materials induced by radiation dose model. The dose model more reasonable and accurate estimation of radiation dose to residents of building materials, building materials for the evaluation of radioactive damage dosimetric basis; safety guidance for selection of building materials, building materials, provide a scientific basis for the revision of radioactive hazard evaluation and control system; the effective protection of the health of residents at the same time, also can promote the scientific development of new building materials, reasonable utilization of industrial waste residue.
The rapid measurement method of radon emanation coefficient of building materials is studied, which can greatly shorten the measuring time. It can improve the detection efficiency and reduce the cost of detection, while promoting the development of radiation protection detection technology, and it is also a useful supplement to the application of the new dose model in practice.
【學(xué)位授予單位】:中國(guó)疾病預(yù)防控制中心
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:R144.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郝光宗,邢麗緣,梁強(qiáng)威;飽和鹽水溶液濕度固定點(diǎn)(1)——原理及制備[J];傳感器世界;1999年11期
2 郝光宗,邢麗緣,梁強(qiáng)威;飽和鹽水溶液濕度固定點(diǎn)(2)——數(shù)據(jù)來(lái)源與鹽溶液選擇[J];傳感器世界;1999年12期
3 顧洪坤,孔令剛;工業(yè)廢渣及建筑材料的天然放射性水平[J];輻射防護(hù)通訊;2001年04期
4 史長(zhǎng)義,鄢明才,劉崇民,遲清華,胡樹(shù)起,顧鐵新,卜維,鄢衛(wèi)東;中國(guó)花崗巖類化學(xué)元素豐度及特征[J];地球化學(xué);2005年05期
5 俞義樵,任天山;室內(nèi)氡的來(lái)源和特性[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年03期
6 任天山;室內(nèi)氡的來(lái)源、水平和控制[J];輻射防護(hù);2001年05期
7 陳英民;許家昂;李福生;;山東省摻工業(yè)廢渣新型墻體材料天然放射性水平調(diào)查[J];輻射防護(hù);2006年05期
8 劉福東;潘自強(qiáng);劉森林;張永貴;;關(guān)于在建材放射性含量標(biāo)準(zhǔn)中增加氡析出率控制指標(biāo)的建議[J];輻射防護(hù);2010年02期
9 陳宇紅;李云龍;黃曉天;王喜元;;民用建筑氣密性對(duì)室內(nèi)污染物濃度影響的研究[J];工程質(zhì)量;2009年11期
10 吳桂惠,丘壽康;粉末礦樣射氣系數(shù)與濕度的關(guān)系[J];輻射防護(hù);1984年04期
相關(guān)博士學(xué)位論文 前1條
1 鄧宏衛(wèi);輕質(zhì)高強(qiáng)粉煤灰陶粒的制備及其混凝土性能[D];哈爾濱工業(yè)大學(xué);2009年
,本文編號(hào):1634950
本文鏈接:http://sikaile.net/yixuelunwen/yufangyixuelunwen/1634950.html