我國(guó)瘧疾流行時(shí)空分布特征及淮河流域瘧疾環(huán)境影響因素研究
本文關(guān)鍵詞: 瘧疾 空間流行病學(xué) 淮河流域 時(shí)空聚類(lèi) 環(huán)境影響因素 出處:《中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院》2013年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:目的 總結(jié)分析近年來(lái)我國(guó)瘧疾時(shí)間、空間和人間分布特征,明確我國(guó)瘧疾高發(fā)區(qū)域和瘧疾季節(jié)變化規(guī)律;分析淮河流域瘧疾時(shí)空分布特征和環(huán)境因素關(guān)系,揭示瘧疾時(shí)空聚集性和影響瘧疾發(fā)生及流行的環(huán)境因素,建立瘧疾風(fēng)險(xiǎn)預(yù)測(cè)模型。為其他蟲(chóng)媒傳染病時(shí)空分布研究提供方法、技術(shù)借鑒,為瘧疾高發(fā)區(qū)監(jiān)測(cè)預(yù)警及科學(xué)防控提供參考。 方法 1.數(shù)據(jù)收集和處理方法 收集研究區(qū)域瘧疾疫情網(wǎng)絡(luò)報(bào)告數(shù)據(jù)、人口信息、氣象監(jiān)測(cè)站點(diǎn)數(shù)據(jù)、水系分布及人均GDP指標(biāo),利用Excel2010對(duì)數(shù)據(jù)進(jìn)行比對(duì)、篩選、排序、整理,統(tǒng)一不同數(shù)據(jù)間相互關(guān)聯(lián)的標(biāo)準(zhǔn),將環(huán)境數(shù)據(jù)與發(fā)病數(shù)據(jù)進(jìn)行關(guān)聯(lián);利用Kriging空間插值法,估計(jì)未知區(qū)域的氣象數(shù)據(jù);利用Supermap軟件計(jì)算淮河流域各區(qū)縣河網(wǎng)密度。 2.分析方法 2.1建立地理信息數(shù)據(jù)庫(kù) 將不同研究區(qū)域和不同年份的瘧疾發(fā)病率與1:400萬(wàn)電子地圖關(guān)聯(lián),利用ArcGIS9.0建立全國(guó)。ㄖ陛犑、自治區(qū))級(jí)和淮河流域縣(市、區(qū))級(jí)地理信息數(shù)據(jù)庫(kù)。 2.2描述性分析方法 利用描述性流行病學(xué)分析方法從時(shí)間、空間、人間三個(gè)方面分析全國(guó)瘧疾分布特征,利用ArcGIS制圖展示全國(guó)及淮河流域瘧疾的空間分布特征。 2.3時(shí)空聚類(lèi)分析方法 利用SaTScan時(shí)空掃描分析方法,從純空間聚類(lèi)分析、純時(shí)間聚類(lèi)分析和時(shí)空聚類(lèi)分析三個(gè)角度探索淮河流域瘧疾時(shí)空聚集性,分析淮河流域瘧疾高發(fā)區(qū)的時(shí)空分布特征。 2.4偏相關(guān)和Spearman等級(jí)相關(guān)分析法 利用偏相關(guān)分析方法分析瘧疾發(fā)病與氣象因子的相關(guān)關(guān)系;利用Spearman等級(jí)相關(guān)分析方法分析瘧疾發(fā)病與河網(wǎng)密度、人均GDP的相關(guān)關(guān)系。 2.5二項(xiàng)Logistic回歸和負(fù)二項(xiàng)回歸分析法 利用二項(xiàng)Logistic回歸方法分析影響瘧疾是否發(fā)生的自然因素;利用負(fù)二項(xiàng)回歸分析方法分析影響瘧疾流行的環(huán)境因素,建立負(fù)二項(xiàng)回歸模型并對(duì)模型進(jìn)行評(píng)價(jià)。 結(jié)果 1.全國(guó)瘧疾分布特征 1.1全國(guó)瘧疾疫情概況 2006-2010年我國(guó)共報(bào)告瘧疾發(fā)病病例154,711例,死亡病例94例,瘧疾年均發(fā)病率為2.34/10萬(wàn),瘧疾發(fā)病逐年遞減。發(fā)病病例中,間日瘧占79.42%,惡性瘧占5.02%,未分型占15.56%;死亡病例中,惡性瘧占80.85%,間日瘧占11.70%,未分型占7.45%。病例報(bào)告中,,實(shí)驗(yàn)室診斷病例占63.06%,臨床診斷病例占36.94%。 1.2全國(guó)瘧疾疫情空間分布 安徽、海南、云南三省瘧疾五年總發(fā)病數(shù)占全國(guó)瘧疾五年總發(fā)病數(shù)的77.48%,三省年均發(fā)病率分別為27.29/10萬(wàn)、23.28/10萬(wàn)、11.73/10萬(wàn)位居全國(guó)前三位,河南、貴州、湖北、西藏次之,發(fā)病率在1/10萬(wàn)-5/10萬(wàn)之間,東北和西北的大部分地區(qū)年均發(fā)病率低于0.1/10萬(wàn)。間日瘧病例中,安徽省間日瘧最多,占總間日瘧的58.59%,其次為云南省和河南省,分別占15.58%和11.52%,其余各省間日瘧構(gòu)成比均低于4%,其中內(nèi)蒙古近五年無(wú)間日瘧病例報(bào)告;惡性瘧病例中,云南省惡性瘧最多,占總惡性瘧的69.07%,其余各省惡性瘧構(gòu)成比均低于6%,其中西藏和寧夏近五年無(wú)惡性瘧病例報(bào)告。 1.3全國(guó)瘧疾疫情時(shí)間分布 全國(guó)瘧疾疫情主要集中在夏秋季節(jié)(7-10月),8月發(fā)病率最高,冬季發(fā)病率較低(11-2月),2月發(fā)病率最低。不同地區(qū)瘧疾發(fā)病呈不同的季節(jié)性,且瘧疾發(fā)病季節(jié)性逐年減弱。 1.4全國(guó)瘧疾疫情人群分布 從性別分布來(lái)看,瘧疾患者以男性為主,占64.8%;從職業(yè)分布來(lái)看,農(nóng)民占63.67%,其次是學(xué)生和城鎮(zhèn)居民,分別占14.52%和10.12%;從年齡分布來(lái)看,年齡超過(guò)60歲的老年人瘧疾發(fā)病率較高為3.41/10萬(wàn),0-5歲的嬰幼兒發(fā)病率較低為1.32/10萬(wàn)。 2.淮河流域瘧疾時(shí)空聚類(lèi)分析 2.1淮河流域瘧疾流行時(shí)空分布特征 2006-2010年淮河流域瘧疾五年總發(fā)病數(shù)占全國(guó)瘧疾五年總發(fā)病數(shù)的62.42%,該流域年均發(fā)病率為11.53/10萬(wàn),約為全國(guó)年均發(fā)病率的5倍,瘧疾發(fā)病呈逐年遞減趨勢(shì)。安徽省的渦陽(yáng)縣、蒙城縣、利辛縣、濉溪縣、烈山區(qū)和河南省的永城市年均發(fā)病率較高均超過(guò)100/10萬(wàn)。該區(qū)域瘧疾發(fā)病主要集中在7-10月,其中8月發(fā)病率最高,2月發(fā)病率最低,且瘧疾發(fā)病季節(jié)性逐年減弱。 2.2空間聚類(lèi)分析 2006年聚集區(qū)中心點(diǎn)坐標(biāo)為(33.92N,116.77E),半徑為71.64km,包括濉溪縣及周邊共15個(gè)縣的區(qū)域;2007-2009年聚集區(qū)中心點(diǎn)坐標(biāo)為(33.27N,116.56E),半徑為92.78km,包括蒙城縣及周邊共30個(gè)縣的區(qū)域;2010年聚集區(qū)中心點(diǎn)坐標(biāo)為(33.27N,116.56E),半徑為109.80km,包括蒙城縣及周邊共36個(gè)縣的區(qū)域。 2.3時(shí)間聚類(lèi)分析 2006年瘧疾發(fā)病相對(duì)高發(fā)期為7-11月,2007-2009年瘧疾發(fā)病相對(duì)高發(fā)期均為6-10月,2010年瘧疾發(fā)病相對(duì)高發(fā)期為5-10月。 2.4時(shí)空聚類(lèi)分析 2006-2010年淮河流域瘧疾發(fā)病的聚集區(qū)中心點(diǎn)坐標(biāo)為(33.27N,116.56E),半徑為92.78km,包括蒙城縣及周邊共30個(gè)縣在內(nèi)的區(qū)域,瘧疾發(fā)病相對(duì)高發(fā)期自2006年6月至2008年11月。 2.5淮河流域瘧疾高發(fā)區(qū)瘧疾時(shí)空分布特征 淮河流域瘧疾高發(fā)區(qū)中25個(gè)縣全年均有瘧疾發(fā)生,且瘧疾發(fā)病呈明顯季節(jié)性,發(fā)病大多集中在7-10月,10月發(fā)病率最高,2月發(fā)病率最低。發(fā)病率較高的地區(qū)為渦陽(yáng)縣、濉溪縣、蒙城縣和烈山區(qū)。 3.淮河流域瘧疾發(fā)病與環(huán)境因素的關(guān)系 3.1瘧疾發(fā)病與環(huán)境因素的相關(guān)性 在淮河流域瘧疾高發(fā)期,瘧疾發(fā)病與當(dāng)月最高溫、前一月降雨量、河網(wǎng)密度呈顯著正相關(guān),與當(dāng)月降雨量、人均GDP呈顯著負(fù)相關(guān);與前一月最高溫、當(dāng)月及前一月最低溫、當(dāng)月及前一月平均溫、當(dāng)月及前一月相對(duì)濕度無(wú)顯著相關(guān)性。 3.2影響瘧疾是否發(fā)生的環(huán)境因素 在瘧疾高發(fā)期,當(dāng)月最高溫超過(guò)27.25℃的地區(qū),有發(fā)生瘧疾的可能。 3.3影響瘧疾流行的環(huán)境因素 在有瘧疾發(fā)生的地區(qū),當(dāng)月降雨量(R0)過(guò)大,瘧疾發(fā)病率(Y)較低,預(yù)測(cè)瘧疾流行的負(fù)二項(xiàng)回歸模型為Y=exp(17.1897-0.2387R_0)。 結(jié)論 1.2006-2010年我國(guó)瘧疾發(fā)病大幅度下降,但抗瘧形勢(shì)仍為嚴(yán)峻。我國(guó)瘧疾流行呈明顯的空間異質(zhì)性特點(diǎn),瘧疾發(fā)病多集中在淮河流域、西南邊境和海南島。我國(guó)瘧疾發(fā)病多集中在夏秋季,且瘧疾發(fā)病季節(jié)性逐年減弱。瘧疾患者多為務(wù)農(nóng)者,以男性為主,老年人發(fā)病率較高。 2.我國(guó)淮河流域瘧疾疫情分布在空間上呈明顯聚集性,在時(shí)間上呈明顯季節(jié)性。不同年份瘧疾發(fā)病的空間聚集區(qū)不同,多以蒙城縣及周邊共30個(gè)縣的區(qū)域?yàn)橹鳌2煌攴莜懠舶l(fā)病的時(shí)間聚集期不同,一般發(fā)病多集中在6-10月。淮河流域瘧疾高發(fā)區(qū)大部分縣(市、區(qū))全年均有瘧疾發(fā)生,春季疫情開(kāi)始擴(kuò)散,秋季發(fā)病率較高。 3.淮河流域瘧疾高發(fā)期的瘧疾發(fā)病與當(dāng)月最高溫、前一月降雨量、河網(wǎng)密度、當(dāng)月降雨量、人均GDP存在相關(guān)性,與相對(duì)濕度等其他氣象因素?zé)o顯著相關(guān)性。瘧疾是否發(fā)生受當(dāng)月最高氣溫的影響,瘧疾流行強(qiáng)弱受當(dāng)月降雨量影響,當(dāng)月降雨量過(guò)大會(huì)抑制瘧疾流行。環(huán)境因素能夠影響瘧疾的發(fā)生和流行,可以通過(guò)對(duì)環(huán)境因素的監(jiān)測(cè)來(lái)預(yù)測(cè)淮河流域瘧疾的流行潛勢(shì)。
[Abstract]:objective
Analysis of malaria in China in recent years, the time, space and human distribution, clear rules of our regional and seasonal variation of malaria malaria malaria; analysis of the relationship between the Huaihe basin and spatial distribution characteristics and environmental factors, revealing the environmental factors of malaria temporal aggregation and influence of malaria incidence and prevalence of malaria risk prediction model is established for other insect borne infectious. Study on temporal and spatial distribution of disease methods provide technical reference, to provide reference for malaria area monitoring and early warning of scientific prevention and control.
Method
1. data collection and processing methods
Collected from the study area of malaria epidemic reporting network data, population information data, meteorological monitoring stations, water distribution and the per capita GDP, using Excel2010 to compare the data, screening, sorting, sorting, the relationship between different data standards, data association and incidence data environment; using Kriging spatial interpolation method, estimation of Meteorological data the unknown area of the Huaihe basin are calculated by using Supermap software; the county drainage density.
2. analysis method
2.1 the establishment of geographic information database
The incidence of malaria in different research areas and different years is associated with 1:400 million electronic map, and ArcGIS9.0 is used to establish the National Geographic Information Database of provinces (municipalities and autonomous regions) and Huaihe basin counties (cities, districts).
2.2 descriptive analysis method
Descriptive epidemiological analysis was used to analyze the distribution characteristics of malaria in China from three aspects: time, space and human. The spatial distribution characteristics of malaria in the whole country and the Huaihe River Basin were revealed by ArcGIS cartography.
2.3 method of spatio-temporal clustering analysis
Using SaTScan spatial and temporal scanning analysis method, from the three aspects of pure spatial cluster analysis, pure time clustering analysis and spatio-temporal cluster analysis, we explored the spatial and temporal clustering characteristics of malaria in Huaihe River Basin, and analyzed the temporal and spatial distribution characteristics of malaria in Huaihe basin.
2.4 partial correlation and Spearman grade correlation analysis
The correlation between malaria incidence and meteorological factors was analyzed by partial correlation analysis. Correlation between malaria incidence and river network density and GDP per capita was analyzed by Spearman rank correlation analysis.
2.5 two term Logistic regression and negative two regression analysis
Two Logistic regression methods were used to analyze the natural factors that affected malaria occurrence. The negative two regression analysis method was used to analyze the environmental factors that affected malaria epidemic. A negative two regression model was established and the model was evaluated.
Result
1. national distribution characteristics of malaria
1.1 malaria epidemic situation in China
2006-2010 years of China reported malaria cases in 154711 cases, 94 cases of malaria deaths, the average annual incidence rate of 2.34/10 million, the incidence of malaria incidence decreased year by year. In case of vivax malaria falciparum malaria accounted for 79.42%, accounting for 5.02%, undifferentiated type accounted for 15.56%; death cases of falciparum malaria, Plasmodium vivax malaria accounted for 80.85%, accounting for 11.70%, not type accounted for 7.45%. case reports, laboratory diagnosed cases of clinically diagnosed cases accounted for 63.06%, accounted for 36.94%.
1.2 spatial distribution of malaria in China
Anhui, Hainan, Yunnan provinces five years the total incidence of malaria malaria accounted for five years the total incidence of 77.48% provinces, the average annual incidence was 27.29/10 million, 23.28/10 million, 11.73/10 million, ranked the top three, Henan, Guizhou, Hubei, Tibet, the incidence rate of between 1/10 million -5 million /10, the average annual in most parts of the northeast and northwest of the rate of less than 0.1/10 million. Vivax malaria cases in Anhui province accounted for most of vivax malaria, Plasmodium vivax 58.59%, followed by Yunnan province and Henan Province, accounted for 15.58% and 11.52%, the rest of the vivax constituent ratio was lower than 4%, which departed Inner Mongolia for nearly five years, malaria case report; malignant malaria, Plasmodium falciparum malaria in Yunnan Province, the total 69.07% falciparum malaria, Plasmodium falciparum constitute more than the rest of the provinces were less than 6%, of which Tibet and Ningxia nearly five years without a malignant malaria case report.
1.3 time distribution of malaria in China
Malaria prevalence in China is mainly concentrated in the summer and autumn season (7-10 months). The incidence is the highest in August, the incidence is low in winter (11-2 months), and the incidence is lowest in February. The incidence of malaria varies seasonally in different regions, and the seasonal incidence of malaria decreases year by year.
1.4 population distribution of malaria in China
From the gender distribution of malaria patients, male dominated, accounting for 64.8%; from the occupation distribution, farmers accounted for 63.67%, followed by students and urban residents, which accounted for 14.52% and 10.12%; from the age distribution, people over the age of 60 malaria high incidence rate of 3.41/10 million, 0-5 year old infant morbidity rate is low 1.32/10 million.
Spatio-temporal clustering analysis of malaria in 2. Huaihe Basin
Spatial and temporal distribution characteristics of malaria epidemic in 2.1 Huaihe River Basin
2006-2010 years of Huaihe river five years the total incidence of malaria malaria accounted for five years the total incidence of 62.42%, the annual incidence rate of 11.53/10 million, about 5 times the average annual incidence, the incidence of malaria was decreasing year by year. Anhui province Guoyang County, Mengcheng County, Lixin County, Suixi County, Lieshan District Henan province and Yongcheng city is higher than the average annual incidence rate of 100/10 million. The incidence of malaria is mainly concentrated in the 7-10 month, which in August the highest incidence rate in February, the lowest incidence of malaria, and the seasonal incidence was decreasing year by year.
2.2 space clustering analysis
In 2006 the gathering area of the center coordinates is (33.92N, 116.77E), radius of 71.64km, including the Suixi county and the surrounding 15 counties in the region; 2007-2009 years gathering area for the center coordinates (33.27N, 116.56E), radius of 92.78km, including the Mengcheng county and the surrounding 30 counties in the region gathered in the centre of 2010; coordinates (33.27N, 116.56E), radius of 109.80km, including the Mengcheng county and the surrounding 36 county area.
2.3 time clustering analysis
The relative high incidence of malaria in 2006 is 7-11 months, and the relative high incidence of malaria in 2007-2009 years is 6-10 months, and the relative high incidence of malaria in 2010 is 5-10 months.
2.4 spatio-temporal clustering analysis
In the 2006-2010 years, the central point coordinates of malaria accumulation in the Huaihe River Basin were (33.27N, 116.56E), and the radius was 92.78km, including 30 counties in Mengcheng county and its surrounding areas. The incidence of malaria was relatively high from June 2006 to November 2008.
Spatial and temporal distribution characteristics of malaria in high incidence area of malaria in 2.5 Huaihe Basin
Malaria incidence occurred in 25 counties in the high incidence area of malaria in Huaihe basin all year round, and the incidence of malaria was significantly seasonal. Most of the cases occurred in 7-10 months. The incidence was the highest in October, and the lowest incidence in February. The areas with high incidence were: Woyang County, Suixi County, Mengcheng county and Lieshan district.
The relationship between the incidence of malaria and environmental factors in 3. Huaihe River Basin
3.1 correlation between the incidence of malaria and environmental factors
The high incidence of malaria in the Huaihe River Basin, the incidence of malaria and the highest temperature, January before rainfall, showed a significant positive correlation with the rainfall, river density, was negatively related to GDP per capita; and the most high temperature before January, and January month before the most low temperature, and the month before January month and average temperature, relative humidity had no significant January before the correlation.
3.2 environmental factors affecting the occurrence of malaria
In the period of high incidence of malaria, there is a possibility of malaria in the region where the highest temperature of the month is over 27.25 degrees centigrade.
3.3 environmental factors affecting the malaria epidemic
In areas with malaria, the monthly rainfall (R0) is too large, the incidence of malaria (Y) is low, and the negative two regression model for predicting malaria epidemic is Y=exp (17.1897-0.2387R_0).
conclusion
1.2006-2010 China's malaria incidence decreased significantly, but the situation is still grim. Anti malaria malaria epidemic in China has obvious characteristics of spatial heterogeneity, the incidence of malaria and more concentrated in the Huaihe basin, southwest border and Hainan Island in China. The incidence of malaria is more concentrated in summer and autumn, and the incidence of malaria was decreasing year by year. The seasonal malaria patients for farmers, male dominated, the elderly high incidence.
2. China's Huaihe basin malaria epidemic distribution were obviously gathered in space, showed obvious seasonal time in different years. The incidence of malaria in the spatial aggregation in different areas, in Mengcheng county and the surrounding 30 county area. The incidence of malaria in different years time aggregation time is different, the general incidence is more concentrated in 6-10 June. Most of the high incidence of malaria in the Huaihe River Basin county (city, district) malaria epidemic occurred all year round, spring began to spread, fall incidence rate is high.
The incidence of malaria in 3. in Huaihe basin of malaria and the most high temperature period, before January rainfall, river density, monthly rainfall, the correlation between per capita GDP, no significant correlation with relative humidity and other meteorological factors is affected by malaria. The highest temperature of the malaria epidemic are influenced by the effect of rainfall, the rainfall will suppress the malaria epidemic. Environmental factors can influence the occurrence and prevalence of malaria, epidemic potential can be predicted by monitoring of malaria in Huaihe watershed environmental factors.
【學(xué)位授予單位】:中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:R531.3;R181.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊國(guó)靜;楊坤;周曉農(nóng);;氣候變化對(duì)媒介傳播性疾病傳播影響的評(píng)估模型[J];氣候變化研究進(jìn)展;2010年04期
2 李鳳玲;;江門(mén)市近10年瘧疾監(jiān)測(cè)及防治策略研究[J];中國(guó)熱帶醫(yī)學(xué);2006年04期
3 王偉明;楊坤;金小林;周華云;曹俊;高琪;;地理信息系統(tǒng)在江蘇省瘧疾監(jiān)測(cè)中的應(yīng)用[J];中國(guó)熱帶醫(yī)學(xué);2007年09期
4 何昌華;王光澤;王善青;胡錫敏;曾文;李凱杰;吳松;;第五輪海南省全球基金瘧疾項(xiàng)目實(shí)施一年效果評(píng)價(jià)[J];中國(guó)熱帶醫(yī)學(xué);2009年06期
5 肖丹;龍泳;王善青;;國(guó)內(nèi)外瘧疾疫情的研究進(jìn)展[J];中國(guó)熱帶醫(yī)學(xué);2010年01期
6 李白坤;朱繼民;湯林華;;淮河流域與瘧疾有關(guān)因素空間分布及對(duì)瘧疾疫情的影響[J];中國(guó)熱帶醫(yī)學(xué);2010年10期
7 王偉明;周華云;曹俊;李菊林;朱國(guó)鼎;顧亞萍;劉耀寶;;江蘇省瘧疾監(jiān)測(cè)點(diǎn)5年縱向監(jiān)測(cè)分析[J];中國(guó)熱帶醫(yī)學(xué);2011年03期
8 劉瑩;王光澤;胡錫敏;蔡紅林;王善青;;海南省2006~2010年瘧疾疫情分析[J];中國(guó)熱帶醫(yī)學(xué);2012年02期
9 韓新煥;;負(fù)二項(xiàng)分布的性質(zhì)特征及在流行病學(xué)研究中的應(yīng)用[J];數(shù)理醫(yī)藥學(xué)雜志;2009年02期
10 吳崧霖;王德全;;GIS和RS技術(shù)在蚊媒傳染病研究中的應(yīng)用進(jìn)展[J];實(shí)用預(yù)防醫(yī)學(xué);2012年01期
相關(guān)碩士學(xué)位論文 前1條
1 張少森;黃淮流域瘧疾回升的生態(tài)因素研究[D];中國(guó)疾病預(yù)防控制中心;2009年
本文編號(hào):1485726
本文鏈接:http://sikaile.net/yixuelunwen/yufangyixuelunwen/1485726.html