天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于空間模型的小地域疾病制圖研究

發(fā)布時(shí)間:2018-01-18 16:01

  本文關(guān)鍵詞:基于空間模型的小地域疾病制圖研究 出處:《武漢大學(xué)》2014年博士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 小地域疾病制圖 空間統(tǒng)計(jì) 貝葉斯統(tǒng)計(jì) 核密度估計(jì) 時(shí)空建模


【摘要】:隨著全球經(jīng)濟(jì)一體化、全球氣候與環(huán)境的變化加劇和人類改造自然能力的不斷提升,人類健康已成為全世界普遍關(guān)注的熱點(diǎn)問題,特別是近三十年,我國(guó)人口的迅速增長(zhǎng)、經(jīng)濟(jì)的迅猛發(fā)展和環(huán)境生態(tài)質(zhì)量的不斷惡化等,人們對(duì)公共衛(wèi)生和各類疾病的關(guān)注度也在持續(xù)增強(qiáng)。疾病制圖是空間流行病學(xué)的重要研究領(lǐng)域,可對(duì)復(fù)雜疾病信息進(jìn)行快速的地理可視化表達(dá),可以識(shí)別在表格中難以確定的分布模式。小地域疾病制圖是近年的研究熱點(diǎn)之一,通過運(yùn)用空間統(tǒng)計(jì)和地理計(jì)算方法,識(shí)別某種疾病在小尺度范圍內(nèi)的高風(fēng)險(xiǎn)區(qū)和爆發(fā)源。本文在空間分析和小地域疾病制圖研究等關(guān)鍵問題的基礎(chǔ)上,結(jié)合疾病數(shù)據(jù)的不同類型,研究了基于空間模型的小地域疾病制圖的基本框架,針對(duì)小地域疾病制圖所遇到的問題采用相應(yīng)的模型方法,并輔以實(shí)例來說明。本文主要以理論和實(shí)踐兩個(gè)層面展開研究。 (一)理論研究 本文從空間自相關(guān)、邊界問題、空間關(guān)系概念化和統(tǒng)計(jì)顯著性檢驗(yàn)等地理數(shù)據(jù)空間效應(yīng)的角度上,詳細(xì)闡述了空間分析面臨的難點(diǎn)和關(guān)鍵問題,針對(duì)不同疾病數(shù)據(jù),總結(jié)了現(xiàn)有疾病聚類分析的方法,探討了傳統(tǒng)統(tǒng)計(jì)制圖的缺陷,指出由于隨機(jī)變化,小地域疾病制圖往往會(huì)導(dǎo)致地圖的額外變異,并且傳統(tǒng)疾病制圖沒有考慮空間自相關(guān)、隨機(jī)變化和視覺偏差等因素,難以準(zhǔn)確描述空間小概率疾病事件的空間變化,需要引入空間模型移除疾病地圖的隨機(jī)部分,并運(yùn)用三種空間模型解決小地域疾病制圖存在的問題。核密度估計(jì)用于疾病點(diǎn)數(shù)據(jù),充分考慮了點(diǎn)要素的空間依賴性特征,生成疾病點(diǎn)數(shù)據(jù)的平滑地圖。層次貝葉斯模型用于區(qū)域數(shù)據(jù),該模型考慮相對(duì)風(fēng)險(xiǎn)等制圖指標(biāo)的空間效應(yīng),通過引入空間統(tǒng)計(jì)單元的空間關(guān)系和概率分布,將數(shù)據(jù)的不確定性和空間自相關(guān)關(guān)系包含在模型之中。貝葉斯時(shí)空模型用于時(shí)空數(shù)據(jù),將疾病相對(duì)風(fēng)險(xiǎn)的空間趨勢(shì)、時(shí)間趨勢(shì)和時(shí)空交互進(jìn)行統(tǒng)一建模,并可探測(cè)疾病風(fēng)險(xiǎn)的熱點(diǎn)和冷點(diǎn)及其時(shí)空變化趨勢(shì)。 (二)實(shí)際應(yīng)用 本文使用核密度估計(jì)對(duì)深圳市2011年高血壓患者的空間分布進(jìn)行了探測(cè),采用數(shù)字深圳空間基礎(chǔ)信息平臺(tái)的地址匹配服務(wù)完成疾病病例的空間化,克服了傳統(tǒng)“人工打點(diǎn)”的缺陷。分析和討論了不同搜索半徑對(duì)核密度計(jì)算過程的影響,并采用局部Moran's I計(jì)算每個(gè)街道內(nèi)核密度值均值的局部自相關(guān)指數(shù),嘗試對(duì)核密度估計(jì)的性能進(jìn)行評(píng)價(jià)。實(shí)驗(yàn)結(jié)果證明深圳市2011年高血壓患者存在顯著的空間分布模式,桂園、華強(qiáng)北等街道為高血壓的高發(fā)區(qū)域。針對(duì)病例地址信息缺失和定位精度等問題,本文采用層次貝葉斯模型分析深圳市2011年高血壓相對(duì)風(fēng)險(xiǎn)的空間變化,并討論了不同結(jié)構(gòu)的空間權(quán)重矩陣對(duì)模型性能的影響,研究成果有助于深圳市公共衛(wèi)生部門對(duì)高血壓患者的防控與管理。 基于深圳市2010年-2012年肝癌發(fā)病數(shù)據(jù),針對(duì)空間統(tǒng)計(jì)處理時(shí)空問題的困難,本文運(yùn)用貝葉斯時(shí)空模型研究肝癌相對(duì)風(fēng)險(xiǎn)的時(shí)空變化,采用兩步分類過程識(shí)別對(duì)風(fēng)險(xiǎn)的熱點(diǎn)和冷點(diǎn)及其時(shí)空變化趨勢(shì),討論了不同空間鄰域類型對(duì)模型性能的影響,使用時(shí)空掃描統(tǒng)計(jì)探測(cè)肝癌患者的時(shí)空聚類,研究結(jié)果表明三年間深圳市肝癌風(fēng)險(xiǎn)存在明顯的東-西劃分的分布格局和顯著的時(shí)空變化趨勢(shì),該信息有助于深圳市公共衛(wèi)生服務(wù)和肝癌病因?qū)W研究,并可用于其他領(lǐng)域小概率事件的時(shí)空建模。 論文的最后,本文根據(jù)研究過程中所遇到的問題,對(duì)整個(gè)研究工作進(jìn)行總結(jié)并提出今后研究的重點(diǎn)和方向。
[Abstract]:With the global economic integration, global climate and environment change and continuously improve the ability of the transformation of human nature, human health has become a hot issue all over the world, especially in the past thirty years, the rapid growth of China's population, the rapid development of economy and ecological environment quality worsening, people continue to enhance the public health and various diseases. Attention is also in disease mapping is an important research field of spatial epidemiology, expression of geographic visualization quickly on the information of complex diseases, can be distributed in the form of pattern recognition is uncertain. Small regional disease mapping is one of the research hotspot in recent years, through the use of spatial statistics and geographical calculation method. Identification of a disease in high-risk areas in a small scale and the source of the outbreak. The key issues in spatial analysis and mapping of the small regional disease group Based on the combination of different types of disease data, research the basic frame of the space model of small regional disease mapping based on the corresponding method used for small regional disease mapping problems, and illustrate by examples. This paper mainly focuses on two aspects of theory and practice.
(1) theoretical study
This paper from the spatial autocorrelation, boundary problem, spatial relationship of conceptual and statistical significance test geographical data such as the spatial effect angle, elaborated the key problems and difficulties facing the spatial analysis, according to different disease data, summarizes the method of clustering analysis of existing diseases, discusses the defects of traditional statistical mapping, pointed out that because of random variation, small regional disease mapping often leads to additional variation map, and the traditional disease mapping without considering spatial autocorrelation, random changes and visual bias and other factors, it is difficult to describe the spatial variation of space small probability of disease events, needs to introduce random space model remove disease map, and three space model by solving the existence of small regional disease mapping problem. Kernel density estimation for disease data, considering the dependence of the feature elements of the space, generating disease Smooth map data. Bayesian hierarchical model for the regional data, the model considering the spatial effect of relative risk mapping index, the spatial relation and probability distribution into spatial statistical units, data uncertainty and spatial autocorrelation relations are included in the model. The model for Bayesian spatio-temporal temporal data, spatial trend of relative disease the risk, time trend and temporal interaction of unified modeling and detection of disease risk, hot and cold spots and its change tendency.
(two) practical application
The use of hypertension patients in Shenzhen city in 2011 the spatial distribution of the detection space using kernel density estimation, digital Shenzhen space information platform, service address complete disease cases, overcome the defect of the traditional artificial management ". And discussed different search radius effects on the calculation process of kernel density, local self the correlation index and the local Moran's I kernel density average value calculated for each street, to try to evaluate the performance of kernel density estimation. Experimental results show that there is an obvious spatial pattern of Shenzhen city in 2011, hypertension garden, street Huaqiang North high risk area for hypertension. Aiming at the problem of missing cases address information and the positioning precision in this paper, using a hierarchical Bayesian model analysis of spatial variation in Shenzhen city in 2011, the relative risk of hypertension, and discuss the different structure of space The impact of the weight matrix on the performance of the model is helpful to the prevention and control of the hypertension patients in the public health department of Shenzhen.
2010 -2012 in Shenzhen city based on the data of liver cancer, according to the spatial statistics processing of spatio-temporal problem difficult, using the spatial and temporal variation of liver cancer Bias space-time model of relative risk, the focus of two step classification process in risk identification and cold point and its variation with time and space, the effects of different types of spatial neighborhood model performance is discussed, the use of space and time scan statistics detection temporal clustering of HCC patients, the results showed that there were significant East West Division in Shenzhen during three years the risk of liver cancer the distribution pattern and the temporal and spatial variation of significant trends, the information service and contribute to the study of etiology of public health in Shenzhen, and can be used in other areas of spatio-temporal modeling of small probability events.
At the end of the paper, this paper summarizes the whole research work and puts forward the focus and direction of the future research according to the problems encountered in the study.

【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:R188;P208

【參考文獻(xiàn)】

相關(guān)期刊論文 前9條

1 閆潤(rùn)澤;周水森;夏志貴;張少森;肖回回;;我國(guó)瘧疾傳播時(shí)空分布特征分析[J];中國(guó)病原生物學(xué)雜志;2014年03期

2 邢健男;賈曼紅;王璐;羅紅兵;王麗艷;陳方方;錢莎莎;郭巍;;2004-2011年云南省注射吸毒者艾滋病流行的時(shí)空分析[J];中華疾病控制雜志;2014年04期

3 李新旭;周曉農(nóng);王黎霞;;結(jié)核病空間分布特征及影響因素研究進(jìn)展[J];中國(guó)公共衛(wèi)生;2014年01期

4 劉力生;;中國(guó)高血壓防治指南2010[J];中華高血壓雜志;2011年08期

5 錢海坤;楊鵬;張奕;王小莉;段瑋;王全意;;2005-2010年北京市猩紅熱發(fā)病時(shí)空掃描分析[J];疾病監(jiān)測(cè);2011年06期

6 唐咸艷;周紅霞;;掃描統(tǒng)計(jì)及其在流行病學(xué)中的應(yīng)用[J];中國(guó)衛(wèi)生統(tǒng)計(jì);2011年03期

7 王勁峰,孟斌,鄭曉瑛,劉紀(jì)遠(yuǎn),韓衛(wèi)國(guó),武繼磊,劉旭華,李小文,宋新明;北京市2003年SARS疫情的多維分布及其影響因素分析[J];中華流行病學(xué)雜志;2005年03期

8 武繼磊,王勁峰,鄭曉瑛,宋新明,孟斌,張科利;空間數(shù)據(jù)分析技術(shù)在公共衛(wèi)生領(lǐng)域的應(yīng)用[J];地理科學(xué)進(jìn)展;2003年03期

9 陸用森;;中國(guó)醫(yī)學(xué)地理制圖的發(fā)展與展望[J];地圖;1991年03期

相關(guān)博士學(xué)位論文 前3條

1 胡藝;基于空間模型的小概率地理健康事件生態(tài)學(xué)研究[D];中國(guó)地質(zhì)大學(xué)(北京);2012年

2 方立群;腎綜合征出血熱時(shí)空分布及環(huán)境危險(xiǎn)因素研究[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2009年

3 殷菲;時(shí)—空掃描統(tǒng)計(jì)量在傳染病早期預(yù)警中的應(yīng)用研究[D];四川大學(xué);2007年

,

本文編號(hào):1441578

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/yufangyixuelunwen/1441578.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶22bfc***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com