癥狀監(jiān)測預(yù)警數(shù)據(jù)分析及方法研究
發(fā)布時(shí)間:2018-01-13 20:40
本文關(guān)鍵詞:癥狀監(jiān)測預(yù)警數(shù)據(jù)分析及方法研究 出處:《昆明理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 癥狀監(jiān)測 CUSUM控制圖 馬爾可夫鏈 ATS
【摘要】:癥狀監(jiān)測對疾病預(yù)防具有日益顯著的前置性優(yōu)勢,能夠在大規(guī)模疾病爆發(fā)之前感知到異常趨勢,為醫(yī)療衛(wèi)生預(yù)防工作留有更加充足的準(zhǔn)備時(shí)間。近年來,癥狀監(jiān)測作為一種全新的監(jiān)測手段,正越來越多地引起人們的關(guān)注。但是現(xiàn)有的疾病監(jiān)測方式有嚴(yán)重的滯后性,在信息錄入形式上的便捷性及信息化程度低,且采集到的樣本信息沒有準(zhǔn)確的數(shù)據(jù)處理方式及預(yù)警分析方法。因此,為了建立可行的癥狀監(jiān)測預(yù)警體系,實(shí)現(xiàn)對重點(diǎn)區(qū)域的實(shí)時(shí)監(jiān)測和數(shù)據(jù)分析,本文應(yīng)用準(zhǔn)確的預(yù)警模型及大數(shù)據(jù)關(guān)聯(lián)信息挖掘方法對監(jiān)測數(shù)據(jù)進(jìn)行數(shù)據(jù)分析、處理和預(yù)警響應(yīng),得到快速、準(zhǔn)確的預(yù)警結(jié)果。論文由幾個(gè)部分構(gòu)成:(1)采用專家評價(jià)法篩選設(shè)計(jì)了癥狀監(jiān)測系統(tǒng)的數(shù)據(jù)源,并運(yùn)用臟數(shù)據(jù)清洗的方式對采集數(shù)據(jù)進(jìn)行粗略的預(yù)處理。(2)從似然比的角度設(shè)計(jì)了休哈特控制圖,基于其對數(shù)據(jù)中小偏移監(jiān)測不靈敏的特點(diǎn)提出了累積和控制圖,并完成了監(jiān)控方差的CUSUM控制圖模型設(shè)計(jì),同時(shí)提出用馬爾可夫鏈的方式計(jì)算控制圖參數(shù)組合下的ATS和ARL值,用以對比模型的靈敏度。(3)設(shè)計(jì)了改進(jìn)型的具有變動(dòng)抽樣區(qū)間的動(dòng)態(tài)CUSUM控制圖,通過ATS及ANSS值的比較得出動(dòng)態(tài)控制圖具有更好的檢出效果,并提出了差異率的概念,對比后得出不同參數(shù)組合下動(dòng)態(tài)控制圖都具有優(yōu)于靜態(tài)控制圖的預(yù)警效果。(4)將監(jiān)控方差的變動(dòng)抽樣區(qū)間的CUSUM控制圖用于癥狀監(jiān)測采樣數(shù)據(jù),使用灰色關(guān)聯(lián)為癥狀數(shù)據(jù)加權(quán)分析,并人為設(shè)定異常點(diǎn),改變采樣數(shù)據(jù)的方差,得出動(dòng)態(tài)控制圖具有準(zhǔn)確度高、靈敏度高的檢出效果。論文采用馬氏鏈的方法計(jì)算相應(yīng)的ATS及差異率,得出采用長短抽樣區(qū)間進(jìn)行控制圖設(shè)計(jì)具有更好監(jiān)測效果的結(jié)論,并將其應(yīng)用于癥狀監(jiān)測預(yù)警系統(tǒng)之中,有效的提高了報(bào)警靈敏度,降低了報(bào)警時(shí)間,提高了監(jiān)測效率。
[Abstract]:Symptom monitoring has an increasingly significant predominance in disease prevention, and it can perceive abnormal trends before large-scale disease outbreaks, leaving more adequate preparation time for medical and health prevention work in recent years. As a new monitoring method, symptom monitoring is attracting more and more attention. However, the existing disease surveillance methods have serious lag, and the convenience and information level of information entry is low. And the collected sample information has no accurate data processing and early warning analysis method. Therefore, in order to establish a feasible symptom monitoring and early warning system, real-time monitoring and data analysis of key areas can be realized. In this paper, the accurate early warning model and big data correlation information mining method are applied to the monitoring data analysis, processing and early warning response, and get fast. The paper is composed of several parts. (1) the data source of the symptom monitoring system is designed by the expert evaluation method. And using dirty data cleaning method to collect data rough preprocessing. 2) from the angle of likelihood ratio design the control chart of Shewhart. Based on its insensitivity to small and medium offset monitoring, the cumulative and control charts are proposed, and the CUSUM control chart model of monitoring variance is designed. At the same time, the method of Markov chain is used to calculate the values of ATS and ARL under the control chart parameter combination. A modified dynamic CUSUM control chart with variable sampling interval is designed to compare the sensitivity of the model. Through the comparison of ATS and ANSS, it is concluded that the dynamic control chart has better detection effect, and the concept of difference rate is put forward. After comparison, it is concluded that the dynamic control chart with different parameters combination has better warning effect than static control chart.) the CUSUM control chart of the variable sampling interval of the monitoring variance is applied to the symptom monitoring sampling data. Grey correlation is used as the weighted analysis of symptom data, and the abnormal points are set artificially to change the variance of the sampling data, and the dynamic control chart is obtained with high accuracy. The method of Markov chain is used to calculate the corresponding ATS and the difference rate. It is concluded that the control chart design with long and short sampling interval has better monitoring effect. It is applied to the symptom monitoring and warning system, which effectively improves the alarm sensitivity, reduces the alarm time and improves the monitoring efficiency.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R181.8;TP277
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳殫;史繼新;陳東妮;張松建;宋士勛;;利用CUSUM和EWMA模型法探測流感流行起始預(yù)警[J];中國公共衛(wèi)生管理;2016年04期
2 胡靈雪;王志遠(yuǎn);李艷婷;潘爾順;;聯(lián)合監(jiān)控均值和方差的累積和控制圖優(yōu)化設(shè)計(jì)[J];工業(yè)工程與管理;2014年06期
3 劉文東;胡建利;艾靜;吳瑩;戴啟剛;梁祁;李媛;湯奮揚(yáng);朱葉飛;;CUSUM模型在流行性腮腺炎早期預(yù)警中的應(yīng)用研究[J];中國衛(wèi)生統(tǒng)計(jì);2014年04期
4 劉瀏;訾雪e,
本文編號(hào):1420471
本文鏈接:http://sikaile.net/yixuelunwen/yufangyixuelunwen/1420471.html
最近更新
教材專著