SLC26A4基因及其致聾突變在COS-7細胞中的表達與功能分析
[Abstract]:SLC26A4 mutation is an autosomal recessive inheritance. More than 200 different types of mutation have been found, which can lead to Pendred syndrome and DFNB4 (OMIM600791) non syndrome genetic deafness.Pendred syndrome. The clinical manifestations of the syndrome are goiter (normal thyroid function or slight decrease) and deafness caused by.SLC26A4 mutation in the deafness. The most common malformation is the enlargement of the vestibular aqueduct (enlarged vestibular aqueduct EVA) and the Mondini malformed.Pendrin in the inner ear, which mainly involved in the Cl-, the transport of HCO3-, which is related to the maintenance of the internal environment in the cochlea. In addition, the pendrin protein does not directly transfer the transmembrane transport of potassium ions, but the study found Pendrin to dimension. The internal potential of the cochlea (potassium ion balance potential) plays an important role in hearing loss. This study was based on the first SLC26A4 induced deafness mutation S448X, the constructed S448X mutants and the wild type SLC26A4 and GFP fusion gene expression plasmids, which were transferred to the dyed cells, and the Western blot was used to detect the protein expression, The green fluorescence of the fusion protein was observed directly and the immunofluorescence staining of the endoplasmic reticulum (ER), the Golgi body (Golgi), the microtubule tissue and the immunofluorescence method were used to observe the changes in the subcellular localization of the mutant pendrin protein. On the other hand, the whole cell current expressing the wild type and the mutant cells was recorded by the patch clamp technique. The effect of SLC26A4 gene mutation on chloride ion and potassium transport ability of cells was determined.
Objective: To observe the expression and functional changes of SLC26A4 gene and its deafness mutation S448X in vitro, and to explore the possible mechanism of its pathogenesis.
Methods: the mutant S448X and wild type SLC26A4 and EGFP fusion protein expression vector were constructed, COS-7 cells were transfected, the expression of protein was analyzed by Western blot, and the immunofluorescence staining of endoplasmic reticulum, Golgi body, microtubule tissue and the change of subcellular localization of mutated protein and wild type SLC26A4 were observed by laser confocal microscopy. Stable expression of mutant S448X and wild-type SLC26A4 cells were selected. The effects of mutant protein and wild type SLC26A4 on cell ion transport function were analyzed by whole cell patch clamp test.
Results: 1, Western blot was used to detect the expression of SLC26A4 wild type and S448X mutation and EGFP fusion protein in cOS-7 cells. Eukaryotic expression plasmid pEGFP N1SLC26A4S448X and pEGFP N1SLC26A4WT can be expressed in COS-7 cells. The size of the protein bands after expression is smaller than the wild type, indicating that the mutant protein is more wild than the wild type. The birth type is truncated.
2, pEGFP N1SLC26A4S448X in COS-7 cells, the green fluorescence is mainly distributed in the cytoplasm, and is Co located with the endoplasmic reticulum, and there is no co location with the Golgi bodies and microtubules, and the non mutant protein expression on the cell membrane is expressed in the cell membrane of the wild type protein of.PEGFP N1SLC26A4WT in the COS-7 cells, and a part of the green fluorescence is clustered in the cells. Quality.
3, the COS-7 cell line screened by G418 stably expressed the Pendrin protein encoded by wild type SLC26A4. The expression of green fluorescent protein could be observed on the cytoplasm of COS-7 cytoplasm and cell membrane, and the fluorescent expression was clear. The COS-7 cells transfected with S448X metamorphic granules were screened for 10 days in G418. All deaths were not found to be screened for monoclonal cells.
4, the cells expressing SLC26A4 wild type and S448X mutation can record stable chlorine ion current. When the voltage changes, the current amplitude changes and has voltage dependence. Statistical analysis shows that the current amplitude is significantly different under each clamp voltage (P0.05), while the non transfected coS-7 cells in the control group are recorded and expressed S4. 48X mutant cell similar size current (P0.05). After giving the chlorine ion blocker NPPB action 20min, the SLC26A4 wild type, the S448X mutation and the untransfected cell current amplitude decreased significantly (P0.05), indicating that the three current can be suppressed by NBBP, which confirms the recorded current as the chlorine ion current.
5, the cells expressing SLC26A4 wild type and S448X mutation can record stable potassium ion current. Statistical analysis shows that under the clamp voltage 30,50,70,90mV, the current intensity of SLC26A4 wild type COS-7 cells is stronger than that of the COS-7 cells expressing S448X and the untransfected control group COS-7 cells (P0.05). The potassium ion channel ions given by the cells are given. After the action of blocking agent TEACL for 20min, the expression of SLC26A4 wild type COS-7 cells, S448X mutation coS-7 cells and the blank control group were all decreased (P0.05). By analyzing the I-V curve, the amplitude of potassium current in each group was not significantly increased when the clamp voltage was -90 to 10mV, and there was no statistical difference between each group (P0.05). At 30-90mV, the amplitude of potassium current increased significantly with the depolarization of membrane potential, and the I-V curve approached to the Y axis, showing obvious outward rectifying characteristics.
Conclusion: the immunofluorescence chemistry showed that the wild type pendrin protein was mainly expressed on the cell membrane. The mutant S448X was mainly expressed in the endoplasmic reticulum. The patch clamp experiment showed that the wild type ion transport capacity was stronger than that of the mutant. This study preliminarily revealed the mechanism of the mutation induced deafness of the SLC26A4 gene, that is, it can not reach the pendrin protein transport by affecting the transport of the protein. The cell membrane forms anionic channel, which can affect the anion transport, and the mutation of SLC26A4 gene can affect the activity of the exportation potassium channel of the cell. This may be an important reason for the mutation of the SLC26A4 gene to cause deafness and the enlargement of the vestibular aqueduct.
【學位授予單位】:中南大學
【學位級別】:博士
【學位授予年份】:2013
【分類號】:R764.43
【相似文獻】
相關期刊論文 前10條
1 巴建明,羅國春,潘長玉,李楠,楊軍;促甲狀腺素和腫瘤壞死因子對鼠甲狀腺細胞間通訊的影響[J];解放軍醫(yī)學雜志;1998年05期
2 于力方;廖杰;王珊;李寧;梅世昌;;銀杏內(nèi)酯B對大鼠心肌細胞間通訊的影響[J];標記免疫分析與臨床;2006年03期
3 郭芙蓮;趙健雄;白德成;王學習;;扶正抑瘤顆粒對小鼠肝癌細胞(H_(22))細胞間通訊的影響[J];四川中醫(yī);2008年10期
4 周琦,龐國祥,李維業(yè);細胞間通訊與前列腺素合成——角膜內(nèi)皮細胞與血小板相互作用合成前列環(huán)素和血栓素[J];眼科研究;1990年03期
5 晏芳;田雪梅;馬曉冬;;白藜蘆醇抑制HepG2細胞生長和對細胞間隙連接通訊的影響[J];南方醫(yī)科大學學報;2006年07期
6 洪濤;馮九庚;蔣麗萍;段劍;汪陽;江志群;;RNA干擾抑制血管平滑肌細胞縫隙連接Cx43介導的細胞間通訊[J];中華實驗外科雜志;2006年06期
7 王學習;趙健雄;陳茹;程衛(wèi)東;白德成;;扶正抑瘤顆粒對小鼠移植性腫瘤細胞間通訊的影響[J];中成藥;2008年03期
8 周逢海;王養(yǎng)民;宋波;金錫御;;18β-GA對逼尿肌不穩(wěn)定縫隙連接介導細胞間通訊功能影響[J];中華實驗外科雜志;2006年03期
9 曲迅,楊美香,鄭廣娟,郭文菁,周文,劉德山,張丹,張靜,趙麗霞,夏麗英;羅勒多糖對腫瘤轉(zhuǎn)移行為的影響[J];中國腫瘤生物治療雜志;2004年01期
10 巴建明,羅國春,潘長玉,李楠,楊軍;白細胞介素-1、-6對鼠甲狀腺FRTL-5細胞間通訊的影響[J];中華內(nèi)科雜志;1997年12期
相關會議論文 前10條
1 李建瑞;劉濤;嚴江偉;;非綜合征型聾SLC26A4基因突變的篩查[A];第十次全國中西醫(yī)結(jié)合耳鼻咽喉科學術會議論文匯編[C];2010年
2 賈素潔;周知;鄧漢武;李元建;;非對稱二甲基精氨酸抑制縫隙鏈接蛋白43介導的內(nèi)皮細胞間通訊(英文)[A];2010年中國藥學大會暨第十屆中國藥師周論文集[C];2010年
3 于新鳳;李辰;景鮮;孟慶莉;羅大力;;縫隙連接對心肌細胞間通訊和鈣信號的影響及在心衰中的意義[A];中國藥理學會第十一次全國學術會議?痆C];2011年
4 李寧;覃漢軍;周春霞;王冬梅;馬文波;林晨;張叔人;;前列腺癌趨化抗原基因修飾瘤苗研究[A];第四屆中國腫瘤學術大會暨第五屆海峽兩岸腫瘤學術會議論文集[C];2006年
5 霍廣平;王道蘭;;邯鋼2000m~3高爐循環(huán)水工程自動控制系統(tǒng)開發(fā)應用[A];河北冶金學會煉鐵技術暨學術年會論文集[C];2006年
6 張曉潔;陳香美;付博;馮哲;王建中;;腎小球系膜細胞間通訊在高糖引起的衰老相關表型改變中的作用[A];“中華醫(yī)學會腎臟病學分會2004年年會”暨“第二屆全國中青年腎臟病學術會議”論文匯編[C];2004年
7 黃翼虎;賈喜梅;李秋陽;;管道SCADA系統(tǒng)設計[A];2006中國控制與決策學術年會論文集[C];2006年
8 賈素潔;周知;鄧漢武;李元建;;非對稱二甲基精氨酸抑制縫隙鏈接蛋白43介導的內(nèi)皮細胞間通訊(英文)[A];2009年中國藥學大會暨第九屆中國藥師周論文集[C];2009年
9 賈素潔;張畢奎;賴永全;鄧漢武;李元建;;非對稱二甲基精氨酸介導3,4,5,6-四羥基口山酮對內(nèi)皮細胞間通訊的保護作用(英文)[A];2010年中國藥學大會暨第十屆中國藥師周論文集[C];2010年
10 劉耀;張曦;陳幸華;李忠俊;司英健;彭賢貴;曾東風;高蕾;高力;孔佩艷;劉紅;孫愛華;王慶余;;骨髓基質(zhì)細胞間通訊在急性白血病化療前后的改變及其機制探討[A];第11次中國實驗血液學會議論文匯編[C];2007年
相關重要報紙文章 前10條
1 中國醫(yī)科院血液學研究所研究員 鄭國光;白血病病因新解:異常細胞間通訊[N];健康報;2011年
2 本報記者 郭英;塑百年萬家惟有創(chuàng)新[N];中國鄉(xiāng)鎮(zhèn)企業(yè)報;2000年
3 編譯 張磊;MLC只是一個備選[N];中國計算機報;2009年
4 黃裔華;偉力塑機公司注重創(chuàng)新和售后服務[N];中國包裝報;2000年
5 通訊員 唐德陽;中鐵四局集團機電公司研制的砂漿車獲7項國家專利[N];人民鐵道;2010年
6 余海若;諾貝爾獎為何64次聚焦生命信使[N];大眾科技報;2004年
7 古林;美國有哪些核彈頭?[N];中國國防報;2002年
8 ;美白護膚又有新選擇[N];消費日報;2001年
9 本報記者 林紫玉;網(wǎng)通成立全國性大客戶服務中心[N];通信產(chǎn)業(yè)報;2002年
10 ;“大客戶”成為運營商業(yè)務重點[N];通信產(chǎn)業(yè)報;2002年
相關博士學位論文 前10條
1 張海林;SLC26A4基因及其致聾突變在COS-7細胞中的表達與功能分析[D];中南大學;2013年
2 覃漢軍;前列腺癌趨化抗原基因疫苗研究[D];中國協(xié)和醫(yī)科大學;2005年
3 劉容枝;趨化抗原基因疫苗的研究[D];中國協(xié)和醫(yī)科大學;2006年
4 林倩;新生兒及嬰兒的聽覺特性與山東地區(qū)耳聾熱點基因突變及其聽力學表現(xiàn)的研究[D];山東大學;2010年
5 賴若沙;極重度感音神經(jīng)性聾兒童致聾因素分析、常見基因檢測及其種族差異性研究[D];中南大學;2011年
6 周逢海;縫隙連接介導的細胞間通訊及其與逼尿肌不穩(wěn)定關系的實驗研究[D];第三軍醫(yī)大學;2004年
7 韓冰;新生兒聽力及基因聯(lián)合篩查106,513例結(jié)果分析與技術研發(fā)及臨床意義研究[D];中國人民解放軍軍醫(yī)進修學院;2013年
8 司艷芳;RNA干擾cx43基因?qū)ε囵B(yǎng)的人RPE細胞的作用及其蛋白質(zhì)組學分析[D];中國人民解放軍軍醫(yī)進修學院;2008年
9 高蕾;人臍血源基質(zhì)細胞促進巨核細胞增殖作用及機制探討[D];第三軍醫(yī)大學;2008年
10 殷昊;植物嫁接體的發(fā)育:接口融合過程的時期劃分、表達譜分析及相關基因的鑒定[D];蘭州大學;2012年
相關碩士學位論文 前10條
1 張國正;中國人群特異的耳聾相關基因SLC26A4基因新變異致病性鑒定及其致聾機制研究[D];河北醫(yī)科大學;2012年
2 王維;胃癌組織中SLC及其受體CCR7的表達與MMP-9、幽門螺桿菌L型感染的相關性研究[D];蚌埠醫(yī)學院;2011年
3 邊菁;人SLC真核表達載體的構(gòu)建,,表達及其效應研究[D];華中科技大學;2008年
4 楊小龍;中國西北地區(qū)藏族、土族、蒙古族非綜合征型耳聾常見聾病基因特征研究[D];蘭州大學;2013年
5 魯峰;Fas介導的病理性瘢痕成纖維細胞死亡信號傳遞及基因調(diào)控的實驗研究[D];第一軍醫(yī)大學;2000年
6 董s
本文編號:2153783
本文鏈接:http://sikaile.net/yixuelunwen/yank/2153783.html