基于解析方法和數(shù)值模擬的中耳結(jié)構(gòu)動(dòng)力學(xué)行為研究
本文選題:中耳結(jié)構(gòu) + 聲波傳導(dǎo)。 參考:《上海大學(xué)》2010年博士論文
【摘要】: 21世紀(jì)是生命科學(xué)高度發(fā)展的時(shí)期,力學(xué)及結(jié)構(gòu)工程的研究已逐步進(jìn)入生命科學(xué)領(lǐng)域。中耳結(jié)構(gòu)是生命活體中微小復(fù)雜的結(jié)構(gòu),它在聲波激勵(lì)下發(fā)生傳導(dǎo)振動(dòng),將聲能轉(zhuǎn)化為機(jī)械能傳入內(nèi)耳,這一傳聲過(guò)程是一個(gè)集固體動(dòng)力學(xué)、流體動(dòng)力學(xué)于一體的復(fù)雜的動(dòng)力傳導(dǎo)過(guò)程。目前,由于中耳病變引起的中耳疾病及其傳導(dǎo)性耳聾仍是耳科醫(yī)學(xué)中的尚未解決的問(wèn)題,而單純醫(yī)療手段研究中耳疾患問(wèn)題未能考慮該結(jié)構(gòu)在傳聲過(guò)程中的動(dòng)力學(xué)行為特征,因此療效不理想。介于中耳結(jié)構(gòu)的特點(diǎn)----聽(tīng)骨鏈及軟組織(鼓膜、韌帶和肌腱)為一體的超精細(xì)微小復(fù)雜結(jié)構(gòu)。本論文基于力學(xué)原理,采用解析分析及數(shù)值模擬相結(jié)合的方法分析中耳結(jié)構(gòu)。解析方法推導(dǎo)振動(dòng)骨架的運(yùn)動(dòng)方程;數(shù)值模擬骨架及軟組織整個(gè)體系的中耳結(jié)構(gòu)。并在前人有限元的基礎(chǔ)上,引入新的數(shù)值方法-----自然單元法進(jìn)行數(shù)值模擬,克服了有限元模擬生物體軟組織的超彈性大變形出現(xiàn)的單元網(wǎng)格畸變和纏結(jié)問(wèn)題。使粘彈性超彈性的耳生物體能更為準(zhǔn)確的模擬分析。其主要工作如下: 1、從機(jī)理上分析中耳結(jié)構(gòu)振動(dòng)骨架系統(tǒng)的力學(xué)特征及物理規(guī)律,采用變分原理,推導(dǎo)了鼓膜、聽(tīng)骨鏈及人工聽(tīng)骨的運(yùn)動(dòng)方程。并通過(guò)與實(shí)驗(yàn)數(shù)據(jù)的對(duì)比,驗(yàn)證了方程的正確性。通過(guò)運(yùn)動(dòng)方程得到參數(shù)變化的物理規(guī)律,其中以彈性模量變化對(duì)中耳振動(dòng)信息(鐙骨底板的振幅)影響最為敏感。進(jìn)一步為數(shù)值模擬提煉參數(shù)優(yōu)化打下基礎(chǔ)。 2、采用Voronoi圖中的邊元素代替圖中體元素構(gòu)造插值函數(shù),提高了自然單元法的計(jì)算效率。在積分方案中采用背景網(wǎng)格積分,并借助有限元方法中確定積分點(diǎn)個(gè)數(shù)方法確定最小積分點(diǎn)數(shù)。在布置積分點(diǎn)時(shí)采用內(nèi)松外密的布點(diǎn)方案。最后采用分片試驗(yàn)、算例對(duì)本文方法進(jìn)行驗(yàn)證,驗(yàn)證結(jié)果表明本方法正確,具有可靠的精度。 3、推導(dǎo)了三維自然單元法動(dòng)力學(xué)問(wèn)題的離散格式,并采用中心差分和Newmark常平均加速度法相結(jié)合的第一種積分格式對(duì)離散格式進(jìn)行解耦,得到每個(gè)自由的解耦遞推式,進(jìn)一步提高了自然單元法在求解動(dòng)力學(xué)問(wèn)題的計(jì)算效率。通過(guò)算例驗(yàn)證本文推導(dǎo)的自然單元法的動(dòng)力學(xué)離散格式和解耦算法的正確性。 4、應(yīng)用自然單元法模擬骨架及包括軟組織(鼓膜、韌帶及肌腱等)在內(nèi)的中耳整體結(jié)構(gòu)的聲音傳導(dǎo)動(dòng)力學(xué)行為。則結(jié)果顯示:自然單元法在使用較少的結(jié)點(diǎn)的情況下,就可以反映出聲波引起中耳結(jié)構(gòu)振動(dòng)的波的特性;自然單元法模擬生物軟組織,特別是超彈性(大變形)的韌帶優(yōu)于有限元法。計(jì)算結(jié)果較有限元法更與實(shí)際(實(shí)驗(yàn))吻合。 5、通過(guò)對(duì)中耳整體結(jié)構(gòu)的模擬分析,得到較單個(gè)構(gòu)件解析方程分析中更進(jìn)一步的認(rèn)識(shí),由解析方程得到的結(jié)論“彈性模量降低,振幅增大”是有條件的和范圍的。在鼓膜帶動(dòng)聽(tīng)骨鏈的傳導(dǎo)運(yùn)動(dòng)中,聽(tīng)骨鏈的彈性模量變化符合解析方程得到的結(jié)論;但由于鼓膜剛度過(guò)小將無(wú)法帶動(dòng)錘骨產(chǎn)生有效的振動(dòng),則當(dāng)鼓膜彈性模量小到一定值時(shí),鐙骨位移振幅反而會(huì)減小。 6、基于以上的解析模型及數(shù)值模型,針對(duì)臨床醫(yī)學(xué)常見(jiàn)的中耳病變問(wèn)題,如鼓膜穿孔、聽(tīng)骨鏈斷裂、人工聽(tīng)骨接入方式以及接入位置等問(wèn)題,用聲音傳導(dǎo)過(guò)程中各部件的動(dòng)力學(xué)行為特征詮釋其病變機(jī)理------鼓膜穿孔和聽(tīng)骨鏈斷裂都出現(xiàn)在應(yīng)力或位移最大位置;人工聽(tīng)骨接在鼓膜凸位置其傳音效果最理想。 7、應(yīng)用數(shù)值模擬分析典型的中耳病變---鼓室硬化導(dǎo)致聽(tīng)力下降的機(jī)理及其手術(shù)治療效果。采用彈性模量增大刻畫軟組織(韌帶及肌腱等)的硬化,采用解除軟組織與顳骨的連接模擬切除硬化軟組織的治療。模擬結(jié)果顯示切除某些硬化韌帶可以恢復(fù)聽(tīng)骨運(yùn)動(dòng),使聲能更有效傳入內(nèi)耳。 本課題的解析方程、數(shù)值模型、以及理論分析的研究成果從力學(xué)與生物結(jié)構(gòu)交叉研究的視角為傳導(dǎo)性耳聾手術(shù)研究提供理論基礎(chǔ);是力學(xué)及結(jié)構(gòu)分析原理滲透到生命活體的研究領(lǐng)域里的一個(gè)初步嘗試。
[Abstract]:The twenty-first Century is a period of high development of life science. The study of mechanical and structural engineering has gradually entered the field of life science. The structure of the middle ear is a tiny and complex structure in living living body. It has transmitted vibration under the excitation of sound waves and transformed the sound energy into a mechanical energy into the inner ear. This sound process is a solid dynamics and fluid dynamics. At present, the middle ear diseases and conductive deafness caused by the middle ear diseases are still the unsolved problems in the ear medicine, and the problem of middle ear disorders in the study of simple medical treatment fails to consider the dynamic behavior characteristics of the structure in the process of sound transmission, so the curative effect is not ideal. The structure is characterized by the hyperfine and complex structure of the ossicular chain and soft tissue (tympanic membrane, ligament and tendon). Based on the principle of mechanics, the structure of the middle ear is analyzed by analytical method and numerical simulation. The equation of motion of the vibration skeleton is derived by analytical method; the middle ear of the framework and the whole system of soft tissue is numerically simulated. On the basis of the predecessors' finite element method, the new numerical method - the natural element method is introduced to simulate the element mesh distortion and entanglement in the finite element simulation of the hyperelastic deformation of the soft tissue of the organism. The viscoelastic hyperelastic ear organism can be more accurately simulated and analyzed. The main work is as follows:
1, the mechanical characteristics and physical laws of the structural vibration skeleton system of the middle ear are analyzed. The equations of motion of the drum, the ossicular chain and the artificial ossicular are derived by the variational principle, and the correctness of the equation is verified by the comparison with the experimental data. The physical law of the variation of the parameters is obtained by the motion equation, in which the modulus of elasticity is changed. It is most sensitive to the vibration information of the middle ear (the amplitude of the stapes base plate), and further lays the foundation for refining the parameters of numerical simulation.
2, using the edge elements in the Voronoi diagram instead of the body elements in the map to construct the interpolation function, the calculation efficiency of the natural element method is improved. In the integral scheme, the background grid integral is used and the minimum integral point number is determined by the method of determining the number of points in the finite element method. The method is verified by the example of piecewise test. The results show that the method is correct and reliable.
3, the discrete scheme of the dynamic problem of the three-dimensional natural element method is derived, and the first integral scheme combined with the central difference and the Newmark constant average acceleration method is used to decouple the discrete scheme, and each free decoupling recursive formula is obtained. The calculation efficiency of the natural element method in solving the dynamic problem is further improved. The correctness of the dynamic discrete scheme and the decoupling algorithm of the natural element method deduced in this paper is verified.
4, the natural element method is used to simulate the dynamic behavior of the framework and the sound conduction of the whole middle ear, including the soft tissue (the tympanic membrane, the ligament and the tendon etc.). The result shows that the natural element method can reflect the wave characteristics of the acoustic wave caused by the sound wave in the middle ear in the case of less nodes; the natural element method simulates the biology. The soft tissue, especially the super elastic (large deformation) ligament, is better than the finite element method. The calculated results are more consistent with the experimental results than the finite element method.
5, through the simulation analysis of the overall structure of the middle ear, we get a further understanding in the analysis of the analytical equation of the single component. The results obtained by the analytical equation "reduce the modulus of elasticity and increase the amplitude" are conditional and range. In the conduction motion of the auditory osseous chain of the tympanic membrane, the change of the elastic modulus of the ossicular chain is in accordance with the analytical equation. The amplitude of the stapes displacement will decrease when the elastic modulus of the tympanic membrane is small to a certain value.
6, based on the above analytical model and numerical model, in view of the common middle ear diseases in clinical medicine, such as tympanic membrane perforation, ossicular chain fracture, artificial auditory bone access and access position, the pathological mechanism of the dynamic behavior of each component in the sound conduction process is interpreted - the tympanic membrane perforation and the ossicular chain fracture appear. In the maximum position of stress or displacement, the artificial auditory ossicle is connected to the tympanic membrane and the sound transmission effect is the best.
7, using numerical simulation to analyze the mechanism of typical middle ear lesions - tympanosclerosis - induced hearing loss and the effect of surgical treatment. The hardening of soft tissue (ligaments and tendons, etc.) was characterized by increasing modulus of elasticity, and the treatment of soft tissue with the connection of the connection of the soft tissue with the temporal bone was used to remove the hardened soft tissue. The simulation results showed that some sclerosis and toughening were removed. The band can restore the ossicular movement and make the sound energy more effectively spread into the inner ear.
The analytical equation, numerical model, and theoretical analysis have provided a theoretical basis for the study of conductive deafness surgery from the perspective of the cross study of mechanical and biological structures, and a preliminary attempt in the field of mechanics and structural analysis infiltrating into living living bodies.
【學(xué)位授予單位】:上海大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2010
【分類號(hào)】:R764;R318.0
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張運(yùn)波;習(xí)國(guó)平;郝艷芳;于翠娟;郭成軍;;人工聽(tīng)骨植入術(shù)后失敗原因分析[J];臨床誤診誤治;2011年08期
2 鄭雅麗;于子龍;龔樹(shù)生;郝新平;;鼓室硬化癥手術(shù)療效分析[J];中國(guó)耳鼻咽喉頭頸外科;2011年07期
3 郭斂容;胡洪義;蘇永進(jìn);;開(kāi)放式鼓室成形術(shù)聽(tīng)力重建效果的分析[J];中國(guó)耳鼻咽喉顱底外科雜志;2011年04期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會(huì)議論文 前10條
1 杜波;張巖;杜寶東;石燕;;鈦人工聽(tīng)骨在鼓室成形術(shù)中應(yīng)用[A];吉林省醫(yī)學(xué)會(huì)第九次耳鼻咽喉—頭頸外科學(xué)術(shù)會(huì)議論文匯編[C];2011年
2 劉陽(yáng);孫建軍;趙晶;趙丹珩;;中耳術(shù)后感染對(duì)羥基磷灰石人工聽(tīng)骨的影響[A];2010全國(guó)耳鼻咽喉頭頸外科中青年學(xué)術(shù)會(huì)議論文匯編[C];2010年
3 錢寶和;張國(guó)明;章程;楊劍;周燕;;開(kāi)放式鼓室成形術(shù)中人工聽(tīng)骨應(yīng)用和面神經(jīng)保護(hù)[A];浙江省中西醫(yī)結(jié)合學(xué)會(huì)耳鼻咽喉科專業(yè)委員會(huì)第三次學(xué)術(shù)年會(huì)暨省級(jí)繼續(xù)教育學(xué)習(xí)班資料匯編[C];2005年
4 呂靜瑤;蔡志毅;;聽(tīng)骨贗復(fù)物在慢性中耳乳突炎Ⅰ期鼓室成型術(shù)中的應(yīng)用研究[A];2005年浙江省耳鼻咽喉科學(xué)術(shù)會(huì)議論文匯編[C];2005年
5 呂靜瑤;蔡志毅;;聽(tīng)骨贗復(fù)物在慢性中耳乳突炎1期鼓室成形術(shù)中的應(yīng)用[A];浙江省中西醫(yī)結(jié)合學(xué)會(huì)耳鼻咽喉科專業(yè)委員會(huì)第三次學(xué)術(shù)年會(huì)暨省級(jí)繼續(xù)教育學(xué)習(xí)班資料匯編[C];2005年
6 錢寶和;張國(guó)明;王武慶;;保留和重塑上鼓室的臨床意義[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)耳鼻咽喉-頭頸外科學(xué)術(shù)會(huì)議論文匯編(下)[C];2007年
7 錢寶和;王武慶;張國(guó)明;;自體材料在上鼓室重建的鼓室成形術(shù)中應(yīng)用[A];浙江省中西醫(yī)結(jié)合學(xué)會(huì)耳鼻咽喉科專業(yè)委員會(huì)第六次學(xué)術(shù)年會(huì)暨省級(jí)繼續(xù)教育學(xué)習(xí)班資料匯編[C];2008年
8 李雪盛;孫建軍;;組織工程化納米羥基磷灰石聽(tīng)骨假體的初步實(shí)驗(yàn)研究[A];中華醫(yī)學(xué)會(huì)全國(guó)中耳炎專題學(xué)術(shù)會(huì)議論文匯編[C];2004年
9 沈志森;;鼓室成形術(shù)中聽(tīng)骨鏈重建65例療效分析[A];華東六省一市耳鼻咽喉-頭頸外科學(xué)術(shù)會(huì)議暨2008年浙江省耳鼻咽喉-頭頸外科學(xué)術(shù)年會(huì)論文匯編[C];2008年
10 王勝軍;;上鼓室膽脂瘤的手術(shù)治療[A];華東六省一市耳鼻咽喉-頭頸外科學(xué)術(shù)會(huì)議暨2008年浙江省耳鼻咽喉-頭頸外科學(xué)術(shù)年會(huì)論文匯編[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 馬紅;顯微外科治中耳畸形[N];健康報(bào);2002年
相關(guān)博士學(xué)位論文 前3條
1 李武;基于解析方法和數(shù)值模擬的中耳結(jié)構(gòu)動(dòng)力學(xué)行為研究[D];上海大學(xué);2010年
2 盧九星;小耳畸形患者的畸形解剖研究及聽(tīng)力重建術(shù)中鼓膜材料的有限元分析[D];中國(guó)協(xié)和醫(yī)科大學(xué);2010年
3 劉后廣;新型人工中耳壓電振子聽(tīng)力補(bǔ)償?shù)睦碚撆c實(shí)驗(yàn)研究[D];上海交通大學(xué);2011年
相關(guān)碩士學(xué)位論文 前7條
1 史筱璐;BMP2誘導(dǎo)豚鼠MSCs分化成骨細(xì)胞制備組織工程人工聽(tīng)骨的實(shí)驗(yàn)研究[D];新疆醫(yī)科大學(xué);2011年
2 聶喜林;人中耳及外耳道有限元模型的建立及驗(yàn)證[D];復(fù)旦大學(xué);2011年
3 黃志勇;鼓室硬化臨床資料及其聽(tīng)骨鏈重建的研究[D];南方醫(yī)科大學(xué);2010年
4 吳玉花;影響開(kāi)放式乳突根治鼓室成形術(shù)聽(tīng)力效果的相關(guān)因素分析[D];鄭州大學(xué);2012年
5 閔小峰;新型壓電式人工中耳中的語(yǔ)音信號(hào)處理研究[D];上海交通大學(xué);2010年
6 石燕;鈦聽(tīng)骨在鼓室成形術(shù)中的應(yīng)用[D];吉林大學(xué);2012年
7 阿依努爾·吐?tīng)柕?鼓室成形術(shù)后聽(tīng)力的變化及相關(guān)影響因素分析[D];新疆醫(yī)科大學(xué);2012年
,本文編號(hào):2107883
本文鏈接:http://sikaile.net/yixuelunwen/yank/2107883.html