天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

冠狀動(dòng)脈CTA圖像的序列分割算法

發(fā)布時(shí)間:2018-07-21 18:37
【摘要】:隨著經(jīng)濟(jì)不斷發(fā)展,人們的生活方式發(fā)生了巨大變化。心腦血管疾病由于高患病率和高死亡率對(duì)人類健康構(gòu)成嚴(yán)重威脅,每年因心腦血管疾病導(dǎo)致的死亡率居高不下。所以對(duì)于心血管疾病早期的診斷和預(yù)防顯得尤其重要。作為冠心病診斷的有效無(wú)創(chuàng)手段,多層螺旋CTA近些年發(fā)展迅速,而基于CTA圖像的血管分割可以準(zhǔn)確提取冠脈輪廓,是冠狀動(dòng)脈狹窄診斷的重要臨床輔助工具,并可以提供鈣化程度、斑塊負(fù)擔(dān)以及狹窄程度的定量分析,因此,成為醫(yī)學(xué)圖像處理領(lǐng)域研究的熱點(diǎn)。而針對(duì)冠脈CTA序列圖像的自動(dòng)或半自動(dòng)分割算法就有著重要的臨床意義和實(shí)際價(jià)值。本文針對(duì)冠脈血管的序列分割,研究工作主要分為一下三部分:第一,主動(dòng)脈血管的序列分割。傳統(tǒng)的基于質(zhì)心的方式雖然能夠?qū)崿F(xiàn)序列分割,卻無(wú)法解決分裂的問(wèn)題;本文提出的基于ISODATA和區(qū)域生長(zhǎng)的序列分割新算法,通過(guò)對(duì)主動(dòng)脈的目標(biāo)進(jìn)行分割,然后對(duì)結(jié)果利用ISODATA算法進(jìn)行聚類,將聚類后得到的目標(biāo)區(qū)域的聚類中心作為下一幅CT圖像新的種子點(diǎn)再進(jìn)行區(qū)域生長(zhǎng)。該算法很好地解決了目標(biāo)分裂的問(wèn)題。第二,冠狀動(dòng)脈血管的序列分割。冠狀動(dòng)脈血管在CTA圖像中目標(biāo)區(qū)域較小,結(jié)構(gòu)復(fù)雜,使自動(dòng)分割有一定難度。于是,本文提出了基于特征匹配的追蹤分割算法。通過(guò)對(duì)所有數(shù)據(jù)閾值化,然后利用區(qū)域特征對(duì)目標(biāo)進(jìn)行匹配,最后實(shí)現(xiàn)冠脈的序列分割。該算法能較好地適應(yīng)小區(qū)域血管的識(shí)別與追蹤。第三,冠狀動(dòng)脈序列分割算法的改進(jìn)。針對(duì)第二部分冠脈序列分割算法中出現(xiàn)的遺漏冠脈細(xì)小血管的不足,提出了基于卡爾曼濾波的改進(jìn)算法。改進(jìn)主要包括兩部分:一是取代全局閾值的粗分割,在上一幀數(shù)據(jù)先驗(yàn)知識(shí)的指導(dǎo)下計(jì)算最優(yōu)局部閾值。二是考慮到目標(biāo)血管運(yùn)動(dòng)幅度過(guò)大導(dǎo)致不在ROI區(qū)域內(nèi)的問(wèn)題,引入了卡爾曼濾波,以預(yù)測(cè)位置點(diǎn)作為ROI區(qū)域中心。改進(jìn)算法明顯可以識(shí)別和追蹤到更多的冠脈細(xì)小血管,提高了追蹤精確度。
[Abstract]:With the development of economy, people's way of life has changed greatly. Cardio-cerebrovascular diseases (CVDs) pose a serious threat to human health due to high morbidity and mortality, and the mortality caused by cardiovascular and cerebrovascular diseases (CVDs) remains high every year. Therefore, early diagnosis and prevention of cardiovascular disease is particularly important. As an effective and noninvasive method for the diagnosis of coronary heart disease, multilayer spiral CTA has developed rapidly in recent years. The segmentation of coronary artery based on CTA image can accurately extract the coronary artery profile, and it is an important clinical assistant tool for the diagnosis of coronary artery stenosis. It can provide quantitative analysis of calcification degree, plaque burden and stenosis degree, so it has become a hot spot in the field of medical image processing. The automatic or semi-automatic segmentation algorithm for coronary CTA images has important clinical significance and practical value. In this paper, the sequence segmentation of coronary artery is divided into three parts: first, the sequence segmentation of aortic vessels. Although the traditional centroid method can achieve sequence segmentation, it can not solve the problem of fragmentation. A new algorithm based on ISODATA and region growth is proposed in this paper. Then the result is clustered by ISODATA algorithm, and the cluster center of the target region is used as the new seed point of the next CT image to grow the region. The algorithm solves the problem of target splitting well. Second, the sequence segmentation of coronary artery. The target area of coronary artery in CTA image is small and the structure is complex, which makes automatic segmentation difficult. Therefore, a tracking segmentation algorithm based on feature matching is proposed in this paper. By thresholding all the data and matching the target with regional features, the coronary artery segmentation is realized. The algorithm is suitable for small area vascular recognition and tracking. Third, the improvement of coronary artery sequence segmentation algorithm. In the second part, an improved algorithm based on Kalman filter is proposed to solve the problem of missing small coronary vessels in the segmentation algorithm of coronary artery sequence. The improvement mainly includes two parts: one is to replace the rough segmentation of global threshold and to calculate the optimal local threshold under the guidance of prior knowledge of the previous frame data. Secondly, considering the problem that the target vessel movement amplitude is too large, the Kalman filter is introduced to predict the location point as the center of ROI region. The improved algorithm can identify and track more small coronary vessels and improve the tracking accuracy.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R816.2;TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王全永;;多層螺旋CT多期增強(qiáng)掃描在診斷腎癌中的應(yīng)用研究[J];中國(guó)CT和MRI雜志;2016年12期

2 周曉寧;郝建敏;陳悅;;一種基于灰度直方圖的閾值分割算法的研究[J];數(shù)字技術(shù)與應(yīng)用;2016年10期

3 周迪;夏哲雷;;一種改進(jìn)的Otsu閾值分割算法[J];中國(guó)計(jì)量大學(xué)學(xué)報(bào);2016年03期

4 劉慧;;突破困境推進(jìn)基層心臟康復(fù)工作[J];中西醫(yī)結(jié)合心血管病電子雜志;2016年18期

5 王軍;孫慧婷;姜志;何昕;;基于Hessian矩陣多尺度濾波的路面裂縫圖像檢測(cè)方法[J];計(jì)算機(jī)應(yīng)用;2016年S1期

6 趙燕穎;程海濤;王志軍;秦國(guó)濤;徐濤;王陽(yáng);孫遠(yuǎn)杰;;冠狀動(dòng)脈粥樣硬化性心臟病與幽門螺桿菌感染的相關(guān)性[J];世界華人消化雜志;2016年10期

7 黃敏;羅萬(wàn)波;李興華;萬(wàn)幸;;醫(yī)學(xué)圖像分割技術(shù)[J];信息通信;2015年07期

8 Li Liu;Ao-Lei Yang;Xiao-Wei Tu;Wen-Ju Zhou;Min-Rui Fei;Jun Yue;;Double regularization control based on level set evolution for tablet packaging image segmentation[J];Advances in Manufacturing;2015年01期

9 顧亦婷;顧海;;從中西醫(yī)結(jié)合角度看心血管疾病的治療[J];中醫(yī)藥信息;2013年06期

10 陳郁淦;周學(xué)成;樂(lè)凱;;根系CT序列圖像區(qū)域生長(zhǎng)分割的新方法[J];計(jì)算機(jī)工程與應(yīng)用;2011年28期

相關(guān)碩士學(xué)位論文 前1條

1 安羽;CT心血管影像分割及可視化[D];北京交通大學(xué);2012年

,

本文編號(hào):2136463

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/xxg/2136463.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a5409***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com