基于個(gè)體化冠脈的球囊-支架系統(tǒng)數(shù)值模擬
本文選題:冠心病 + 個(gè)體化; 參考:《首都醫(yī)科大學(xué)》2016年碩士論文
【摘要】:冠心病是指冠狀動(dòng)脈粥樣硬化使管腔發(fā)生堵塞以及冠狀動(dòng)脈功能性的改變,導(dǎo)致心肌缺血、缺氧而引起的心臟病,亦稱為缺血性心臟病。冠心病嚴(yán)重威脅著人類的健康,其預(yù)防、診斷和治療一直是臨床研究中一項(xiàng)迫切需要解決的重大課題。支架植入術(shù)是治療冠心病的一種有效手段,近年來得到了廣泛應(yīng)用。其過程是將壓握在球囊導(dǎo)管的支架輸送到血管病變部位,通過施壓膨脹球囊使支架擴(kuò)張變形以達(dá)到支撐血管的目的。目前,支架植入手術(shù)方案如支架尺寸、置入方案的選取等主要依靠造影二維顯像和臨床經(jīng)驗(yàn),缺乏必要的理論依據(jù),也無法直接獲取支架后冠脈的管腔幾何形變及內(nèi)部鋼梁分布與貼壁情況,預(yù)估病人的治療效果。而且人體存在個(gè)體差異性,不合理的支架手術(shù)方案可能引發(fā)術(shù)后并發(fā)癥如支架后再狹窄等。本論文立足于當(dāng)前冠脈支架植入手術(shù)治療冠心病的現(xiàn)狀,期望建立一種基于個(gè)體化冠脈的球囊-支架系統(tǒng)模型,能夠更加真實(shí)的反映臨床中支架在狹窄冠脈段擴(kuò)張及回彈服役的過程,從而更直觀地了解支架植入引起的管腔幾何形變、支架與血管的應(yīng)力應(yīng)變情況以及支架鋼梁的分布與貼壁情況等,為個(gè)性化的支架植入手術(shù)方案和療效預(yù)測(cè)提供一定的指導(dǎo)。論文的主要工作包括:針對(duì)球囊-支架系統(tǒng)擴(kuò)張和回彈模擬中的球囊選擇,我們研究了不同球囊褶皺模型對(duì)支架擴(kuò)張和回彈過程的影響。結(jié)合制造商提供的壓力-直徑順應(yīng)性曲線驗(yàn)證模擬的合理性,并引入“狗骨頭”率(DB)、軸向縮短率(LR)及徑向回彈率(RR)評(píng)估球囊-支架系統(tǒng)模擬結(jié)果的優(yōu)劣。結(jié)果表明,球囊的褶皺形態(tài)影響著支架的擴(kuò)張和回彈,無褶球囊-支架系統(tǒng)的模擬效果最差,六褶錐形末端球囊-支架系統(tǒng)的模擬結(jié)果最符合制造商的數(shù)據(jù),支架擴(kuò)張更加均勻,且DB、LR和RR都較低。因此,在有限元模擬中,為了更真實(shí)的模擬支架的擴(kuò)張和回彈,球囊的褶皺和錐形末端的幾何特征不可忽略。在論文的第二大部分(第三章),我們根據(jù)患者的CT血管造影(CTA)影像重建右冠狀動(dòng)脈模型,采用第一部分討論的六褶錐形末端球囊,進(jìn)行基于個(gè)體化冠脈的球囊-支架系統(tǒng)共同擴(kuò)張和回彈的耦合模擬,對(duì)有限元模擬的準(zhǔn)靜態(tài)條件及臨床一致性進(jìn)行了評(píng)估,并分析了管腔幾何支架前后的形變及支架擴(kuò)張最大時(shí)刻和回彈服役時(shí)刻血管和支架的應(yīng)力應(yīng)變分布,最后對(duì)支架的定位情況進(jìn)行了研究。評(píng)估結(jié)果發(fā)現(xiàn),計(jì)算模擬結(jié)果與臨床造影顯像具有良好的一致性。支架的植入使血管發(fā)生了一定程度的抻直形變,同時(shí)也很大程度上改變了血管的管腔直徑和管腔面積。血管的最大主應(yīng)力分布主要集中在斑塊區(qū)域,在支架最大擴(kuò)張程度下的應(yīng)力值達(dá)到了血管的極限應(yīng)力,可能有破裂的風(fēng)險(xiǎn)。支架受到的Mises應(yīng)力最值出現(xiàn)在支撐體的拐彎處以及花冠間的連接處。在服役的最終時(shí)刻,我們還發(fā)現(xiàn)支架近端附近出現(xiàn)了接觸不良現(xiàn)象,這可能與回彈不完全和彎曲的幾何構(gòu)造相關(guān)。
[Abstract]:Coronary artery disease is a kind of coronary atherosclerosis that causes the obstruction of the cavity and the function of coronary artery, which leads to myocardial ischemia and hypoxia. It is also called ischemic heart disease. Coronary heart disease is a serious threat to human health. The prevention, diagnosis and treatment of coronary artery disease is an important lesson in clinical research. Stent implantation is an effective method for the treatment of coronary heart disease. It has been widely used in recent years. The process is to carry the stent in the balloon catheter to the site of vascular lesion, and to expand the stent by pressure expansion balloon to achieve the purpose of supporting the blood vessel. The selection is mainly dependent on the two-dimensional imaging and clinical experience, lack of the necessary theoretical basis, and can not directly obtain the geometric deformation of the cavities of the stent and the distribution of the internal steel beam and the adherence of the internal steel, and predict the treatment effect of the patients. Moreover, there are individual differences in the human body. The unreasonable stent operation may lead to postoperative complications. This paper, based on the current status of coronary stent implantation in the treatment of coronary heart disease, expects to establish a balloon stent system based on individualized coronary artery, which can more truly reflect the process of stent expansion and resilience in narrow coronary segments, thus more intuitively understanding of stent implantation. The geometric deformation of the cavity, the stress and strain of the stent and blood vessel, the distribution and the attachment of the support steel beam provide some guidance for the individualized stent implantation and the prediction of the effect. The main work of this paper includes: We studied the different spheres for the balloon stent system expansion and the selection of the balloon in the rebound simulation. The effect of the capsule fold model on the expansion and springback of the scaffold. Combined with the pressure diameter compliance curve provided by the manufacturer to verify the rationality of the simulation, and the introduction of the "dog bone" rate (DB), the axial shortening rate (LR) and radial rebound rate (RR) to evaluate the simulation results of the balloon stent system. The results show that the fold shape of the balloon affects the support. The expansion and rebound of the frame, the least simulated effect of the folds of the balloon stent system, the simulation results of the six fold tapered end balloon stent system most conform to the manufacturer's data, the stent expansion is more uniform, and the DB, LR and RR are lower. Therefore, in the finite element simulation, the folds and cones of the balloon are in the form of more real simulation of the expansion and rebound of the scaffold. The geometric features of the end can not be ignored. In the second part of the paper (third chapter), we reconstruct the right coronary artery model based on the CT angiography (CTA) image of the patient, and use the six fold tapered terminal balloon discussed in the first part to simulate the joint expansion and rebound of the balloon support system based on the individual coronary artery, and to the finite element. The quasi static condition and clinical consistency of the simulation were evaluated. The deformation of the stent, the maximum time of stent expansion and the stress and strain distribution of the stent were analyzed. Finally, the position of the stent was studied. The results were presented, and the results of calculation and clinical imaging were calculated. Good consistency. The implantation of the stent causes a certain degree of straightening of the blood vessel, and it also greatly changes the diameter of the lumen and the cavity area of the vessel. The distribution of the maximum principal stress in the blood vessel is mainly concentrated in the patch area. The stress value under the maximum expansion of the stent has reached the ultimate stress of the blood vessel, and may have broken down. Risk. The Mises stress of the scaffold is most valued at the bend of the support and the junction between the corolla. At the end of the service, we also found that there was a bad contact near the proximal end of the support, which may be related to the incomplete and curved geometry of the springback.
【學(xué)位授予單位】:首都醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:R541.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 ;藥物涂層冠脈金屬支架系統(tǒng)研發(fā)成功[J];生物醫(yī)學(xué)工程學(xué)進(jìn)展;2008年03期
相關(guān)重要報(bào)紙文章 前4條
1 金平;“藥物涂層冠脈金屬支架系統(tǒng)”研發(fā)成功[N];光明日?qǐng)?bào);2008年
2 記者 張曄 通訊員 程守勤;我科學(xué)家成功研制粒子支架系統(tǒng)[N];科技日?qǐng)?bào);2013年
3 董昌俊;柳梧大橋明年四月竣工通車[N];西藏日?qǐng)?bào);2006年
4 記者 陳明 通訊員 徐鞏發(fā);一冶一建筑新技術(shù)得到成功運(yùn)用[N];中國(guó)冶金報(bào);2010年
相關(guān)碩士學(xué)位論文 前4條
1 何玉娜;基于個(gè)體化冠脈的球囊-支架系統(tǒng)數(shù)值模擬[D];首都醫(yī)科大學(xué);2016年
2 王斌華;滑移支架系統(tǒng)結(jié)構(gòu)設(shè)計(jì)及關(guān)鍵技術(shù)研究[D];長(zhǎng)安大學(xué);2004年
3 王劍;基于ANSYS的橋梁施工扣件式支架系統(tǒng)計(jì)算分析研究[D];中南大學(xué);2012年
4 彭曼;A支架系統(tǒng)結(jié)構(gòu)設(shè)計(jì)研究[D];哈爾濱工程大學(xué);2012年
,本文編號(hào):1883265
本文鏈接:http://sikaile.net/yixuelunwen/xxg/1883265.html