同模態(tài)與多模態(tài)的眼底圖像配準(zhǔn)
[Abstract]:There are many kinds of fundus diseases, such as retinal angiopathy, inflammatory disease, macular disease, retinopathy and so on. Fundus diseases affect people's daily life very much, and cataract, glaucoma, senile macular degeneration and diabetic retinopathy are the four major causes of blindness, which bring great inconvenience to people's daily life. Fundus images are the main methods for the diagnosis of fundus diseases. Fundus-free fundus images and fundus fluorescein angiography images are the two most widely used images in clinical diagnosis. Because the field of view of one image is limited, the same mode fundus image registration can synthesize a larger field of view and determine the location of the lesion. The information of multimodal fundus images is complementary, and multi-modal fundus image registration can provide more accurate information for doctors. However, at present, the registration of these two kinds of images is realized by "artificial silhouette" in the mind of the doctor, which requires a higher doctor, and the diagnosis time is long, and the probability of missed diagnosis and misdiagnosis is also high. In order to study the fundus image registration, this paper studies the basic theory of image registration, and analyzes the advantages and disadvantages of the existing image registration algorithms. The fundus image registration is divided into the same mode fundus image registration and multi-modal fundus image registration. In this paper, the classical image registration algorithm SIFT is applied to the same mode fundus image registration, and the correlation parameters of the SIFT algorithm are adjusted to make the SIFT algorithm suitable for the fundus images with low contrast. However, the grayscale difference between multimodal fundus images is nonlinear, and the SIFT algorithm is no longer applicable. According to each step of SIFT, this paper analyzes the reasons why the SIFT algorithm is not suitable for multi-modal fundus image registration. Aiming at the analysis reasons, this paper proposes the multi-modal fundus image registration based on rotation invariant distance. Firstly, Harries is used to extract stable feature points of fundus vessels, then rotation invariant descriptor is established, then rotation invariant distance between feature points is calculated, feature points are matched according to rotation invariant distance, finally, RANSAC is used to eliminate mismatches and estimate transformation matrix. Realize image fusion. The fundus image data obtained in this paper were collected from South ft Hospital. The pathological fundus non-red fundus images and fundus fluorescein angiography (FFA) images were collected respectively, and the healthy non-red fundus images and fundus fluorescein angiography (FFA) images were each 80. A total of 320 fundus images. The mean square error (RMSE) was used to analyze the errors of the same mode fundus image registration algorithm and the multimodal fundus image registration algorithm. According to the experimental results, the average error of the same mode fundus image registration based on SIFT is 2.40 鹵0.5pixels, and the average error of multimodal fundus image registration based on rotation invariant distance is 0.89 鹵0.72 pixels. The matching success rate is 92.4%, and the performance of the algorithm is not affected by the image rotation. In this paper, the classical SIFT algorithm is proved to be suitable for the same-mode fundus image registration, and it is also proved that the multi-modal image registration algorithm based on rotation invariant distance can overcome the nonlinear gray-scale difference among the multi-modal fundus images. The registration of multimodal fundus images is realized.
【學(xué)位授予單位】:深圳大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R770.4;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡磊;畢維民;陳迪;郭永新;張光玉;李艷春;焦青;;眼底圖像處理軟件在眼科臨床應(yīng)用觀察[J];泰山醫(yī)學(xué)院學(xué)報(bào);2009年09期
2 張東波;易瑤;趙圓圓;;基于投影的視網(wǎng)膜眼底圖像視盤檢測(cè)方法[J];中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào);2013年04期
3 劉愛珍,馬斌榮,徐亮,楊樺,孫秀英;眼底圖像融合[J];中國(guó)醫(yī)學(xué)影像技術(shù);2003年11期
4 劉愛珍;王小兵;徐亮;任海萍;宋菲;王颯;;眼底圖像對(duì)位頻閃[J];首都醫(yī)科大學(xué)學(xué)報(bào);2006年05期
5 余輪;魏麗芳;潘林;;眼底圖像配準(zhǔn)技術(shù)研究進(jìn)展[J];生物醫(yī)學(xué)工程學(xué)雜志;2011年05期
6 魏麗芳;潘林;余輪;;一種病變眼底圖像的配準(zhǔn)方法[J];中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào);2011年04期
7 陳驥;彭承琳;;眼底圖像的三維重建[J];生物醫(yī)學(xué)工程學(xué)雜志;2008年01期
8 陳萌夢(mèng);熊興良;張琰;王詩(shī)鳴;李廣;;1種視網(wǎng)膜眼底圖像增強(qiáng)的新方法[J];重慶醫(yī)科大學(xué)學(xué)報(bào);2014年08期
9 劉愛珍,馬斌榮,徐亮,孫秀英,宋菲;眼底圖像的配準(zhǔn)[J];醫(yī)療設(shè)備信息;2003年10期
10 曹米莎;程建新;陳昱昆;龐博;王劍鋒;詹增榮;鄺健;周少博;李輝;梁納;袁永剛;盧毓敏;陳悅玲;;眼底圖像檢驗(yàn)系統(tǒng)對(duì)眼底的臨床觀察與研究[J];臨床醫(yī)學(xué)工程;2013年01期
相關(guān)會(huì)議論文 前4條
1 王子亮;潘林;余輪;;基于矢量方法的眼底圖像預(yù)處理[A];第十四屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年
2 曹米莎;程建新;陳昱昆;龐博;王劍鋒;詹增榮;鄺健;周少博;李輝;梁納;袁永剛;盧毓敏;陳悅玲;;眼底圖像檢驗(yàn)系統(tǒng)對(duì)眼底的臨床觀察與研究[A];“廣東省光學(xué)學(xué)會(huì)2013年學(xué)術(shù)交流大會(huì)”暨“粵港臺(tái)光學(xué)界產(chǎn)學(xué)研合作交流大會(huì)”會(huì)議手冊(cè)論文集[C];2013年
3 黃君鑫;;紅外眼底鏡的研究[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
4 朱琳琳;唐延?xùn)|;;基于眼底特征的視盤自動(dòng)檢測(cè)[A];2010中國(guó)儀器儀表學(xué)術(shù)、產(chǎn)業(yè)大會(huì)(論文集1)[C];2010年
相關(guān)博士學(xué)位論文 前5條
1 高瑋瑋;眼底圖像分割算法及應(yīng)用研究[D];南京航空航天大學(xué);2013年
2 李居朋;眼底圖像處理與分析中一些關(guān)鍵問題的研究[D];北京交通大學(xué);2009年
3 韓松濤;眼底圖像的血管特征分析[D];吉林大學(xué);2010年
4 姚暢;眼底圖像分割方法的研究及其應(yīng)用[D];北京交通大學(xué);2009年
5 李鵬飛;眼底圖像實(shí)時(shí)處理與液晶自適應(yīng)系統(tǒng)控制研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2010年
相關(guān)碩士學(xué)位論文 前10條
1 于婷;眼底圖像視神經(jīng)盤和滲出物自動(dòng)分割算法研究[D];蘭州大學(xué);2015年
2 鄭姍;主動(dòng)輪廓模型及其在眼底圖像分割中的應(yīng)用[D];沈陽(yáng)理工大學(xué);2015年
3 于甜甜;基于自適應(yīng)盲解卷積的眼底圖像復(fù)原[D];山東農(nóng)業(yè)大學(xué);2015年
4 于揮;眼底圖像中病變的檢測(cè)方法研究[D];蘭州交通大學(xué);2015年
5 趙麒然;基于改進(jìn)參數(shù)核圖割的OCT眼底圖像分割方法研究[D];吉林大學(xué);2016年
6 潘燕紅;基于監(jiān)督分類的糖尿病視網(wǎng)膜病變檢測(cè)方法的研究[D];福州大學(xué);2014年
7 李敏;眼底圖像血管三維重建方法研究[D];天津工業(yè)大學(xué);2016年
8 邵一婷;彩色眼底圖像視盤自動(dòng)檢測(cè)方法研究[D];天津工業(yè)大學(xué);2016年
9 祝婉;多模眼底圖像配準(zhǔn)方法研究[D];天津工業(yè)大學(xué);2016年
10 崔寧;彩色眼底圖像血管參數(shù)測(cè)量方法研究[D];天津工業(yè)大學(xué);2016年
,本文編號(hào):2456661
本文鏈接:http://sikaile.net/yixuelunwen/wuguanyixuelunwen/2456661.html