額外負(fù)重結(jié)合高頻率低載荷振動(dòng)對(duì)大鼠骨力學(xué)性能的影響
[Abstract]:The morphological structure of bone is suitable for its function. The mechanical environment at the bone has a significant effect on its morphological structure and mechanical properties. In addition to the mechanical environment, the drug can also influence the morphological structure and mechanical properties of the bone. But long-term administration may have side effects. It is necessary to explore the effect of non-drug and non-invasive therapy on the mechanical properties of bone. The effects of high frequency low load vibration and extra load training on the mechanical properties of bone were studied in a large number of previous studies. Because these high-frequency low-load vibration studies differ in the length of experiment, the result of the test and the applicable conditions, there are different conclusions in the analysis of the effect. The additional weight-bearing training, i.e., relative daily life can generate greater stress to the bone, contributes to the accumulation of bone mineral content and the increase of bone volume, and affects the mechanical properties of the bone. However, the effect of receiving high-frequency low-load vibration stimulation at the same time of extra weight is little known. This study is useful for researchers to understand the mechanism of additional weight-bearing and high-frequency low-load vibration on bone. The purpose of this study was to explore the effects of additional weight-bearing combined with high-frequency low-load vibration on bone in growth phase from macroscopic, microscopic and nano-scales. Twenty-one-month-old female Wistar rats were randomly divided into 10 groups, namely, sedentary group (SED), negative recombination (Wbx, x = 5, 12, 19, 26), basic vibration group (V), and weight-bearing vibration group with additional weight (x = 5, 12, 19, 26). The frequency and acceleration of the vibration were 45 Hz and 0.3 g, respectively. The experiment was carried out for 12 weeks, 7 days a week, 15 minutes a day. The weight of the rat was accurately measured the day before the experiment to determine the weight of the negative backpack in the first week. Subsequently, the body weight of the rats was measured at the weekend of the week and re-weighed for the backpack. After 12 weeks, rats were sacrificed, serum and left femur were collected. The contents of anti-tartaric acid phosphatase (5b, TRAP5b), alkaline phosphatase (ALP), calcium (Callum, Ca) and phosphorus (P) in serum were analyzed quantitatively. For the left femur obtained, the macroscopic mechanical properties of femoral head were examined by three-point bending mechanics experiment, and the microstructure of femoral head cancellous bone and femoral shaft cortical bone was evaluated by micro-computed tomography (micro-CT). Using nano-indentation test technology to test the mechanical properties of bone materials at the nano-view scale. The results showed that the macroscopic mechanical properties, microstructure and nano-view mechanical properties of SED group were better than that of SED group (P0.05). The microstructures of group V19 (x = 5, 12, 19, 26) were poor, and the content of TRAP5b in serum was significantly higher than that in SED group (P0.05). The mechanical properties of nano-view materials in V26 group are better. The body weight of SED group was highest and significantly higher than that in V5 group, V19 group and V26 group (P0.05). The results obtained in this study: (1) The additional weight-bearing and high-frequency low-load vibration did not play an active role in the microstructure of growth phase bone; meanwhile, with the increase of weight, the microstructure of bone was negatively affected. The effect of extra load on the microstructure of growth phase bone is not big; with the increase of extra weight, the micro-morphological structure parameters will be affected, but not enough to cause significant change in macroscopic mechanical properties. (2) The high-frequency low-load vibration of extra weight load failed to improve the mechanical properties of the bone nano-scale. However, when the extra load is higher, such as 26% of weight bearing weight, the additional weight-bearing combined with high-frequency low-load vibration is more favorable for improving the mechanical properties of the nano-scale of bone material. (3) Appropriate additional loading, combined with high frequency low load vibration, helps to reduce body weight. Body weight reduction not only affects bone mineral density (BMD), but also affects microscopic structure parameters bone volume fraction (BV/ TV), bone small beam thickness (Tb. Th) and bone trabecula separation (Tb. Sp).
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R318.01
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董心;馬洪順;朱興華;施德廣;趙梅生;;軟組織材料—角膜的力學(xué)性能研究[J];試驗(yàn)技術(shù)與試驗(yàn)機(jī);1989年04期
2 趙梅生;李桂榮;董心;;人眼角膜的力學(xué)性能研究[J];試驗(yàn)技術(shù)與試驗(yàn)機(jī);1997年Z1期
3 姜洪麗;劉欣;王曉鵬;李斌;;木塑復(fù)合材料表面性能對(duì)力學(xué)性能的影響[J];泰山醫(yī)學(xué)院學(xué)報(bào);2008年04期
4 曹艷平;鄭修鵬;馮西橋;;基于屈曲方法測(cè)量生物纖維的力學(xué)性能[J];醫(yī)用生物力學(xué);2009年S1期
5 嚴(yán)洪海,文學(xué)軍,趙士芳;表面等離子滲氮處理鈦的生物相容性評(píng)價(jià)──1.表面分析及力學(xué)性能評(píng)價(jià)[J];中國(guó)口腔種植學(xué)雜志;1996年02期
6 巢永烈,丁旭艷,梁星,韓曉莉;粉末冶金制作鈦合金試件的力學(xué)性能測(cè)試[J];上?谇会t(yī)學(xué);2001年02期
7 汪焰恩;魏慶華;楊明明;魏生民;;PVP/PVA水凝膠力學(xué)性能的分子動(dòng)力學(xué)模擬[J];醫(yī)用生物力學(xué);2014年02期
8 于思榮,張新平,何鎮(zhèn)明,高忠民,王翠妍;Ce對(duì)Ti-Fe-Mo-Mn-Nb-Zr合金組織與力學(xué)性能的影響[J];生物醫(yī)學(xué)工程學(xué)雜志;2004年01期
9 史雪婷;徐立新;楊云龍;;聚磷酸鈣纖維分布形態(tài)對(duì)磷酸鹽骨水泥力學(xué)性能的影響[J];蘭州理工大學(xué)學(xué)報(bào);2013年02期
10 王西明;周永軍;張輝;;穴位組織的力學(xué)性能及行針過(guò)程針體所受阻力分析[J];咸陽(yáng)師范學(xué)院學(xué)報(bào);2013年04期
相關(guān)會(huì)議論文 前10條
1 陳眾迎;龍連春;;三維編織復(fù)合材料的力學(xué)性能研究現(xiàn)狀[A];北京力學(xué)會(huì)第15屆學(xué)術(shù)年會(huì)論文摘要集[C];2009年
2 陳青;盧嘉德;胡良全;;酚醛樹(shù)脂結(jié)構(gòu)與高溫力學(xué)性能相關(guān)性的探索研究[A];復(fù)合材料:生命、環(huán)境與高技術(shù)——第十二屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集[C];2002年
3 黃玉亭;楊勇新;李平;顧習(xí)峰;王明明;;纖維增強(qiáng)復(fù)合材料格柵力學(xué)性能測(cè)試與評(píng)估[A];第十八屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];2010年
4 張小英;;土壤填埋降解后絲素纖維的微觀結(jié)構(gòu)和力學(xué)性能[A];蘇州市自然科學(xué)優(yōu)秀學(xué)術(shù)論文匯編(2008-2009)[C];2010年
5 王玉金;周玉;宋桂明;黃智恒;雷廷權(quán);;鎢絲增強(qiáng)鎢基復(fù)合材料的組織與力學(xué)性能[A];2000年材料科學(xué)與工程新進(jìn)展(下)——2000年中國(guó)材料研討會(huì)論文集[C];2000年
6 徐獻(xiàn)忠;施力;劉雯雯;劉大全;郭惠麗;庫(kù)丹;;食品的力學(xué)性能與人類咬合過(guò)程參量的關(guān)系[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
7 羅靚;張佐光;張立功;孫志杰;;復(fù)合材料層板預(yù)夾雜質(zhì)對(duì)力學(xué)性能的影響[A];2004年材料科學(xué)與工程新進(jìn)展[C];2004年
8 滕雅娣;舒燕;母繼榮;李旭日;;遼寧建平產(chǎn)膨潤(rùn)土對(duì)甲基乙烯基硅橡膠力學(xué)性能的影響[A];2007年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2007年
9 高麗蘭;陳旭;高紅;;各向異性導(dǎo)電膠膜的力學(xué)性能研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
10 盧國(guó)興;阮冬;;蜂窩鋁材料的力學(xué)性能研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
相關(guān)重要報(bào)紙文章 前4條
1 ;熱軋帶鋼力學(xué)性能在線監(jiān)控系統(tǒng)(待續(xù))[N];世界金屬導(dǎo)報(bào);2001年
2 王華;大厚度海洋平臺(tái)用鋼的組織和力學(xué)性能[N];世界金屬導(dǎo)報(bào);2013年
3 余萬(wàn)華;CQE-熱軋鋼卷的力學(xué)性能控制模型[N];世界金屬導(dǎo)報(bào);2009年
4 本報(bào)記者 朱祝何;技術(shù)規(guī)范更接“地氣”[N];中國(guó)質(zhì)量報(bào);2013年
相關(guān)博士學(xué)位論文 前10條
1 賴長(zhǎng)亮;復(fù)合材料格柵結(jié)構(gòu)力學(xué)性能分析與制備[D];西北工業(yè)大學(xué);2015年
2 朱天彬;鎂碳耐火材料組成、結(jié)構(gòu)與力學(xué)性能研究[D];武漢科技大學(xué);2015年
3 秦利軍;三維編織C/C復(fù)合材料關(guān)鍵基礎(chǔ)力學(xué)性能研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
4 任小勇;地質(zhì)工程用高性能無(wú)鈷硬質(zhì)合金的制備、結(jié)構(gòu)及力學(xué)性能研究[D];中國(guó)地質(zhì)大學(xué)(北京);2016年
5 高巖;多軸向三維機(jī)織復(fù)合材料細(xì)觀結(jié)構(gòu)與力學(xué)性能研究[D];天津工業(yè)大學(xué);2016年
6 竺鑫橋;海膽牙齒ST區(qū)納米結(jié)構(gòu)、力學(xué)性能及變形機(jī)制的研究[D];浙江大學(xué);2016年
7 段書(shū)用;面向車(chē)身應(yīng)用的LGFRP復(fù)合材料制備工藝及力學(xué)性能研究[D];湖南大學(xué);2016年
8 梁存;粉末熱機(jī)械固結(jié)法制備塊體金屬材料(鈦、鋁、銅)的顯微結(jié)構(gòu)和力學(xué)性能研究[D];上海交通大學(xué);2015年
9 謝娟;針織物傳感器雙向延伸電—力學(xué)性能及肢體動(dòng)作監(jiān)測(cè)研究[D];東華大學(xué);2015年
10 趙衛(wèi)哲;γ射線輻照對(duì)聚丙烯腈纖維環(huán)化交聯(lián)及碳纖維結(jié)構(gòu)與性能的影響[D];東華大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 裴旺;磁控濺射制備V-Al-Ta-N四元涂層結(jié)構(gòu)及其性能研究[D];昆明理工大學(xué);2015年
2 劉磊;抗沖擊碳化硅基復(fù)合材料的制備與力學(xué)性能研究[D];河北聯(lián)合大學(xué);2014年
3 蔡寶壯;超細(xì)晶銅基合金塑性變形機(jī)理及力學(xué)性能的研究[D];昆明理工大學(xué);2015年
4 關(guān)倩倩;持荷受火疊合柱在爆炸沖擊波作用下力學(xué)性能數(shù)值模擬[D];燕山大學(xué);2015年
5 時(shí)萌蒙;重組方材兩種原材料疏解干燥工藝研究[D];西北農(nóng)林科技大學(xué);2015年
6 唐偉文;穿山甲鱗片宏-微觀力學(xué)性能表征及其耐沖擊性仿真[D];西南交通大學(xué);2015年
7 魯婷菊;纖維素增強(qiáng)聚合物復(fù)合材料的制備與力學(xué)性能研究[D];西南交通大學(xué);2015年
8 尹曉君;含Ca、Sb的Mg-xAl-yZn-zSi合金組織與性能研究[D];陜西理工學(xué)院;2015年
9 張雨溪;改性陶瓷粉體對(duì)鑄造鋅鋁合金組織及性能影響的研究[D];大連交通大學(xué);2015年
10 劉玲麗;變面循環(huán)軋制AZ31鎂合金微觀組織與力學(xué)性能研究[D];南京理工大學(xué);2015年
,本文編號(hào):2260926
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2260926.html