基于B超圖像的脂肪肝檢測系統(tǒng)的研究
[Abstract]:At present, the main method of fatty liver examination is ultrasonic imaging, but because of the shortcomings and shortcomings of ultrasound imaging, some computer-aided methods are needed to achieve a better recognition effect. However, the existing computer-aided methods for recognition of fatty liver have the disadvantages of low recognition rate and large amount of calculation, and can not meet the requirements of the construction of modern digital hospitals. This paper puts forward a new solution to the above situation, which can promote the recognition of fatty liver and the construction of hospital information. In recognition of fatty liver, this paper proposes different solutions for two different types of fatty liver. For non-uniform fatty liver, image enhancement method is adopted, combining the advantages of histogram equalization and homomorphism filtering, the image of suspected regional fatty liver is enhanced to highlight the lesion position and remind users to pay attention to it. For diffuse fatty liver, this paper analyzes and compares the existing computer-aided recognition methods and their advantages and disadvantages, and proposes a multi-level gray difference recognition method based on B-ultrasound image. Firstly, a trapezoid area is delineated on the liver image of interest, and the noise problem of vascular image in the delineated area is removed by using an improved median filtering algorithm. Then the delineated area is divided into a plurality of small trapezoid areas. The average grayscale value of each small trapezoid region is calculated to get the multilevel grayscale difference feature of liver picture, and then the multilevel gray difference characteristic curve of normal liver and fatty liver is analyzed and compared to determine the validity of multilevel grayscale difference feature. Finally, BP artificial neural network is used for feature recognition to achieve the purpose of image discrimination. In hospital information construction, this paper uses different image acquisition methods to connect the fatty liver detection system with the hospital image database, which supports the DICOM3.0 digital interface and the analog signal output of the S-terminal. To realize the sharing of hospital information. In particular, a semantic report template generation method is proposed for the writing of hospital medical records, which improves the efficiency of doctors.
【學位授予單位】:廣西工學院
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:R197.39;TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 侯宏花,陳樹越,郭保全;醫(yī)學B超圖像降噪處理的三種方法比較[J];測試技術(shù)學報;2003年03期
2 鄧娟,楊家明;一種改進的BP算法神經(jīng)網(wǎng)絡[J];東華大學學報(自然科學版);2005年03期
3 李明霞;任伯緒;龔蘭;;脂肪肝超聲診斷的研究進展[J];長江大學學報(自科版)醫(yī)學卷;2009年02期
4 黃旭;;DICOM醫(yī)學圖像數(shù)據(jù)的讀取[J];計算機時代;2008年11期
5 李軍,丁萃菁;一種改進的BP算法在實際應用中的研究[J];計算機仿真;2004年02期
6 趙德杰;田裕鵬;;DICOM網(wǎng)絡通信模型的設計與實現(xiàn)[J];計算機與數(shù)字工程;2006年04期
7 王鷹漢;占明;;用VC++和DCMTK顯示DICOM醫(yī)學圖像[J];科技信息(科學教研);2008年02期
8 陳衍斯;李彬;田聯(lián)房;陳萍;;PACS中DICOM圖像傳輸與存取系統(tǒng)的設計[J];生物醫(yī)學工程研究;2008年02期
9 紀現(xiàn)才,蘇開娜;DICOM中網(wǎng)絡通信協(xié)議的研究與設計[J];計算機工程與設計;2004年03期
10 張達榮,邱德凱;幫你認識脂肪肝[J];上海醫(yī)藥;1995年07期
相關(guān)重要報紙文章 前1條
1 記者 閆煈;[N];健康報;2011年
相關(guān)碩士學位論文 前7條
1 章蓉;對非酒精性脂肪肝患者健康教育及飲食干預的效果分析[D];山東大學;2011年
2 王傳永;基于人工神經(jīng)網(wǎng)絡的血液細胞圖像分割方法研究[D];天津理工大學;2005年
3 李瑞霞;一種改進的基于本體的語義匹配算法研究[D];太原理工大學;2007年
4 梁娜;基于語義的圖像檢索技術(shù)在醫(yī)學影像系統(tǒng)中的研究與應用[D];西北大學;2008年
5 肖紅;醫(yī)學圖像的格式轉(zhuǎn)換與分析處理[D];北京交通大學;2008年
6 羅煜;基于超聲圖像的脂肪肝疾病量化分析[D];華中科技大學;2007年
7 陳韌斌;A醫(yī)院信息化建設評價及其改進策略研究[D];復旦大學;2009年
本文編號:2256847
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2256847.html