PLGA納米粒緩釋系統(tǒng)的建立及其對(duì)rhFGF-2和rhBMP-2生物學(xué)活性的維持
[Abstract]:BACKGROUND AND OBJECTIVE: Bone transplantation is often needed in the clinical treatment of segmental bone defect repair, limb joint reconstruction, spinal fusion and so on. Many types of artificial bone have been used in clinic, mainly calcium phosphate cement, hydroxyapatite and biodegradable organic materials, mainly for non-structural bone grafting. However, the effect of bone repair of these artificial bone is limited or poor, far inferior to that of autogenous bone or allogeneic bone, and the main reason is that these artificial bone grafts are mainly used in non-structural bone grafting. Growth factors can promote the proliferation and differentiation of mesenchymal stem cells and promote the formation of new bone effectively. When they are combined with artificial bone scaffolds, they are expected to endow artificial bone with effective osteogenic activity. As a result, how to construct an effective growth factor sustained-release system has become a key problem in this field. Poly (lactic acid-glycolic acid) (PLGA) nanoparticles are used in pharmaceuticals. PLGA is a synthetic polymer that can be used as a carrier for many drugs to achieve sustained release in vivo. If PLGA is used as a carrier to load growth factors, it is expected to achieve slow release of growth factors in vivo, thus maintaining adequate local bone repair. It is hoped that the composite artificial bone with high osteogenic activity can be prepared to meet the clinical demand for ideal bone repair materials. Our team is going to select a kind of PLGA as the main material to establish nanoparticle sustained-release system for preparation. Conditions were optimized to encapsulate protein substances more efficiently, protect the biological activity of protein effectively, and release these substances steadily for more than one month, laying a foundation for the preparation of highly active artificial bone repair materials. PLGA with low molecular weight and 50:50 ratio of lactic acid to glycolic acid monomer was chosen as the main material for the preparation of nanoparticles. (2) The in vitro release kinetics of PLGA nanoparticles to BSA, recombinant human bone morphogenetic protein-2 (rh BMP-2) and recombinant human basic fibroblast growth factor-2 (rh FGF-2) were studied by optimizing the preparation conditions. To evaluate the sustained-release effect of rh-FGF-2/PLGA nanoparticles. (3) The biocompatibility of PLGA nanoparticles was confirmed by co-culture with mesenchymal stem cells, CCK-8 method and livedead staining. (4) The biological activity of rh-FGF-2/PLGA nanoparticles was verified by cell proliferation test, alkaline phosphatase (ALP) staining, ALP activity detection, osteocalcin (OCN) content detection, osteogenesis. Results: (1) PLGA nanoparticles were successfully prepared and the preparation conditions were optimized. When the concentration of PLGA was 200 mg/ml, the mass ratio of BSA to PLGA was 1:40, the volume ratio of water to oil was 1:10, and the deionized water was used in the inner water phase, the best encapsulation efficiency and drug loading rate of BSA were obtained. The encapsulation efficiency of BSA, RH BMP-2 and Rh FGF-2 was (70.0 6550 After co-culture for 3 days, the cell viability was good. (5) Rh-FGF-2/PLGA nanoparticles could promote the proliferation of C2C12 cells significantly. After co-culture for 7 days, the proliferation-promoting effect of rh-FGF-2 nanoparticles was significantly stronger than that of rh-FGF-2 solution group (p0.05). ALP staining, ALP activity detection, osteocalcin content detection, osteogenesis-related markers expression results confirmed that rh-BMP-2/PLGA nanoparticles could promote the proliferation of C2C12 cells. CONCLUSION: PLGA nanoparticles prepared under the optimized conditions are regular spheres with high encapsulation efficiency for protein, can achieve slow release for more than a month, and have good biocompatibility. RhBMP-2 and rh-FGF-2 loaded with PLGA nanoparticles still have good biological activity. PLGA nanoparticles are suitable for sustained-release carrier of growth factors, which provides a new choice for endowing artificial bone with high osteogenic induction activity.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:R687;R318.17
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王志清;劉衛(wèi);徐輝碧;楊祥良;;載三氧化二砷的PEG-PLGA隱性納米粒的制備及體外研究(英文)[J];Chinese Journal of Chemical Engineering;2007年06期
2 ;Effect of degradation of PLGA and PLGA/β-TCP scaffolds on the growth of osteoblasts[J];Chinese Science Bulletin;2011年10期
3 王晶,周慶頌,袁悅,莫鳳奎;生物降解聚合物PLGA-PEG-PLGA的合成及表征[J];沈陽藥科大學(xué)學(xué)報(bào);2005年05期
4 曹穎光,王戎,王華均,吳慧華,胡立桉;骨髓間充質(zhì)干細(xì)胞與PLGA體外附著的實(shí)驗(yàn)研究[J];臨床口腔醫(yī)學(xué)雜志;2005年04期
5 于家傲;路來金;李玲玲;劉志剛;鄒廣田;;高壓合成HA/PLGA骨折內(nèi)固定材料的體內(nèi)外降解研究[J];中華手外科雜志;2006年01期
6 徐國富;牟申周;蔡惠;廖素三;陳蕾;尹志民;;三層式nCHAC/PLGA復(fù)合膜體外降解行為的研究[J];生物骨科材料與臨床研究;2006年02期
7 郭曉東;;Surface Modification of Biomimetic PLGA-(ASP-PEG) Matrix with RGD-Containing Peptide:a New Non-Viral Vector for Gene Transfer and Tissue Engineering[J];Journal of Wuhan University of Technology(Materials Science Edition);2006年03期
8 李艷妍;李立新;孫智輝;尹一子;;含紫杉醇PLGA緩釋微球的研制及理化性質(zhì)[J];中國生物制品學(xué)雜志;2007年05期
9 陳劍;樊新;周忠誠;阮建明;;PLGA材料仿生改性的最新進(jìn)展[J];粉末冶金材料科學(xué)與工程;2008年06期
10 李雙燕;;PLGA組織工程支架材料的研究與展望[J];國外絲綢;2009年02期
相關(guān)會(huì)議論文 前10條
1 鄭強(qiáng);潘志軍;薛德挺;李杭;李建兵;;納米PLGA/HA復(fù)合物和骨髓基質(zhì)干細(xì)胞在軟骨修復(fù)中的應(yīng)用[A];2009年浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2009年
2 王漢杰;蘇文雅;廖振宇;王生;常津;;PLGA/Liposome核殼納米粒子的制備[A];天津市生物醫(yī)學(xué)工程學(xué)會(huì)第30次學(xué)術(shù)年會(huì)暨生物醫(yī)學(xué)工程前沿科學(xué)研討會(huì)論文集[C];2010年
3 王光林;吳輝;;聯(lián)合靜電紡絲法和轉(zhuǎn)筒接收法制備PLGA—膠原—絲素納米神經(jīng)導(dǎo)管[A];第六屆西部骨科論壇暨貴州省骨科年會(huì)論文匯編[C];2010年
4 趙潔;全大萍;廖凱榮;伍青;;含不同側(cè)氨基密度的ASP-PEG-PLGA的合成與表征[A];中國生物醫(yī)學(xué)工程學(xué)會(huì)第六次會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要匯編[C];2004年
5 黃艷霞;任天斌;張麗紅;呂凱歌;蔣欣泉;潘可風(fēng);任杰;;PLGA/NHA-RGD復(fù)合材料的制備及性能研究[A];2006年上海市醫(yī)用生物材料研討會(huì)論文匯編[C];2006年
6 ;Synthesis of PLGA Labeled with ~(125)I[A];2006年上海市醫(yī)用生物材料研討會(huì)論文匯編[C];2006年
7 李艷輝;崔媛;張慧敏;關(guān)秀文;;利用等離子體技術(shù)在PLGA表面固定膠原的研究[A];2011年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
8 何樹;畢龍;劉建;扈剛;孟國林;董鑫;郝賦;趙軼男;;新型PLGA/HMS-HA復(fù)合微球載體支架對(duì)兔骨髓間充質(zhì)干細(xì)胞生物學(xué)行為的影響[A];中華醫(yī)學(xué)會(huì)第七次全國骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會(huì)議論文匯編[C];2013年
9 ;Preparation of PLGA Ultrasound Microbubble Loaded Hematoporphyrin and optimization of formulation[A];中華醫(yī)學(xué)會(huì)第十次全國超聲醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2009年
10 李志宏;武繼民;汪鵬飛;陳學(xué)忠;黃姝杰;關(guān)靜;張西正;;BMP/PLGA緩釋微球的制備與體外釋放性能[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第4分冊(cè))[C];2010年
相關(guān)重要報(bào)紙文章 前3條
1 記者 白毅;合成溫敏型PLGA-PEG-PLGA嵌段共聚物[N];中國醫(yī)藥報(bào);2006年
2 尹東鋒 鐘延強(qiáng);聚合物 藥物 制備工藝 附加劑[N];中國醫(yī)藥報(bào);2006年
3 李博;“人造紅細(xì)胞”[N];大眾衛(wèi)生報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 李玉華;載阿倫磷酸鈉PLGA微球的磷酸鈣骨水泥復(fù)合組織工程骨修復(fù)兔股骨髁骨缺損的實(shí)驗(yàn)研究[D];山東大學(xué);2015年
2 周璇;RGD靶向微泡與載藥微球在肝臟創(chuàng)傷滲血診斷和治療中的研究[D];中國人民解放軍醫(yī)學(xué)院;2015年
3 陶春;可注射鑲嵌載生長因子殼聚糖微球的PLGA多孔復(fù)合微球支架的研究[D];第二軍醫(yī)大學(xué);2015年
4 鮑文;靶向納米載藥系統(tǒng)DNR-PLGA-PLL-PEG-Tf治療惡性血液病的體內(nèi)、體外研究[D];東南大學(xué);2015年
5 王晨暉;裝載蛋白藥物的PCADK/PLGA混合微球研究及在重組人生長激素中的應(yīng)用[D];吉林大學(xué);2016年
6 盧明子;載血紅蛋白PEG-PLGA納米粒子的構(gòu)建、生物學(xué)作用及其靶向性能的研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2016年
7 張皓軒;載辛伐他汀PLGA微球/磷酸鈣組織工程骨的生物相容性和成骨活性的研究[D];山東大學(xué);2016年
8 李青;新型高效靶向ROS響應(yīng)的載藥納米粒子系統(tǒng)在口腔鱗癌治療中的研究[D];山東大學(xué);2016年
9 齊峰;粒徑均一的PLGA顆粒制備及在長效緩釋體系和Pickering乳液中的應(yīng)用[D];中國科學(xué)院研究生院(過程工程研究所);2015年
10 劉苒;轉(zhuǎn)鐵蛋白修飾的新型多聚物載藥納米粒的研制及靶向逆轉(zhuǎn)白血病多藥耐藥的體外研究[D];東南大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 陽剛;復(fù)合肌腱修復(fù)材料—載細(xì)胞用防粘連性隔離/支架型PLGA膜的體外研制[D];中南大學(xué);2010年
2 唐冠男;微流控技術(shù)原位合成多形貌PLGA/TiO_2復(fù)粒子及其體外藥物釋放的研究[D];華南理工大學(xué);2015年
3 李文秀;形貌可控的PLGA/PCL復(fù)合粒子的制備及體外降解性能的基礎(chǔ)研究[D];華南理工大學(xué);2015年
4 黃卓穎;重組人表皮生長因子PLGA納米粒經(jīng)皮治療大鼠糖尿病潰瘍的作用研究[D];福建中醫(yī)藥大學(xué);2015年
5 聞繼杰;含胺基修飾beta-環(huán)糊精的可降解兩親性聚酯的合成及其對(duì)蛋白質(zhì)和抗癌藥物的控制釋放[D];天津理工大學(xué);2015年
6 王翠偉;基于點(diǎn)擊化學(xué)制備PCL/PEG兩親性共網(wǎng)絡(luò)聚合物以及不同支臂PLGA作為疫苗載體的初步研究[D];北京協(xié)和醫(yī)學(xué)院;2015年
7 王共喜;PLA/AT納米復(fù)合材料的制備與性能及PLGA纖維的表面改性[D];復(fù)旦大學(xué);2014年
8 劉青;植入體材料與PLGA載藥微球的復(fù)合研究[D];西南交通大學(xué);2015年
9 張科技;蠶絲-PLGA支架的生物相容性及力學(xué)性能的研究[D];浙江省醫(yī)學(xué)科學(xué)院;2015年
10 黃曉君;關(guān)節(jié)腔注射用青藤堿-PLGA微球—溫敏凝膠的制備及評(píng)價(jià)[D];廣東藥學(xué)院;2015年
,本文編號(hào):2219476
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2219476.html