天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

骨修復(fù)因子功能化聚乳酸的制備及其生物相容性研究

發(fā)布時間:2018-05-14 21:54

  本文選題:骨修復(fù) + 功能聚乳酸前體 ; 參考:《重慶大學(xué)》2012年博士論文


【摘要】:目前,因自然災(zāi)害、交通事故、工傷、運動創(chuàng)傷、骨腫瘤切除引起的骨損傷,先天性骨疾病、代謝性骨質(zhì)疏松(OP)、以及各類骨修復(fù)后再骨折造成的骨損傷成為威脅人們健康最大的疾病,受到世界范圍的廣泛關(guān)注。據(jù)美國統(tǒng)計,全球每年對此的醫(yī)療花費約170億美元,我國每年也有3000萬人次進入臨床治療。這已構(gòu)成強大的全球性經(jīng)濟社會需求。因此制備具有臨床應(yīng)用意義的骨修復(fù)替代材料至關(guān)重要。本研究從現(xiàn)有骨修復(fù)植入體進入人體后面臨的問題出發(fā),以FDA獲準的臨床骨修復(fù)材料聚乳酸(Polylactic acid, PLA)為基本原料,以促黏附因子RGDS/膠原、抗應(yīng)力遮擋因子MGF-Ct24E、抗血小板凝聚/抗炎癥因子甘油磷脂膽堿為模型活性分子,建立起了共價引入RGDS/膠原、MGF-Ct24E和甘油磷脂膽堿的技術(shù)平臺,并以成骨細胞為模型細胞,體外考察了這些因子的濃度對成骨細胞的影響規(guī)律,尋求最適濃度,旨在為設(shè)計和制備具有全面生物活性功能的骨修復(fù)植入體提供理論和技術(shù)基礎(chǔ),同時也為制備兼具促黏附活性、抗應(yīng)力遮擋活性和抗血小板凝聚/抗炎癥活性的新型多功能骨修復(fù)材料奠定基礎(chǔ)。 本文的主要研究內(nèi)容和結(jié)論如下: 1.功能聚乳酸前體的制備與表征 ①側(cè)鏈接枝改性的功能聚乳酸前體Ⅰ、Ⅱ的制備 1)功能聚乳酸前體Ⅰ即馬來酸酐改性聚乳酸(MPLA)的制備:以分子量分布在1.3以內(nèi),數(shù)均分子量為10萬左右的聚乳酸為反應(yīng)原料,通過自由基反應(yīng)在聚乳酸主鏈CH上引入馬來酸酐,采用FTIR、13C NMR進行定性評價,采用羅丹明比色法對MPLA中的MAH進行定量分析。結(jié)果表明,在聚乳酸的側(cè)鏈上成功引入了馬來酸酐。在分子量為10萬左右的聚乳酸側(cè)鏈上可實現(xiàn)至少三個馬來酸酐濃度梯度:1.53%、2.45%、3.04% 2)功能聚乳酸前體Ⅱ即二胺改性聚乳酸(DPLA)的制備:以上述三個濃度的馬來酸酐改性聚乳酸為反應(yīng)基材,利用脂肪族二胺與酸酐基團可以發(fā)生;磻(yīng)的特點,在聚乳酸的側(cè)鏈上引入了具有活性反應(yīng)末端的脂肪族二胺,從而為后續(xù)引入各類活性因子提供反應(yīng)有效活性位點。采用FTIR、13C NMR進行定性評價。結(jié)果表明,在聚乳酸的側(cè)鏈上成功引入了丁二胺。茚三酮顯色法測試可知,所得二胺改性聚乳酸中二胺的含量分別為:1.37%、2.20%、2.59%,從而制備了后續(xù)反應(yīng)所需的功能聚乳酸前體Ⅱ。 ②主鏈共聚改性的功能聚乳酸前體Ⅲ的制備 為了進一步提高聚乳酸上的活性反應(yīng)位點,從而引入更高含量的活性因子,本研究還采用主鏈共聚的方法引入了反應(yīng)活性基團,制備了功能聚乳酸前體Ⅲ。 1)衣糠酸酐改性聚乳酸(PITLA)的制備:采用D,L-丙交酯為原料,Sn(Oct)2為引發(fā)劑,通過熔融聚合的方法先合成低分子量的聚乳酸。為提高后續(xù)反應(yīng)的速率,聚乳酸的分子量控制在5000。然后將其與甲基丙烯酸酐(MAA)進行反應(yīng),制得PDLLA-MAA。最后,在過氧化二苯甲酰(BPO)引發(fā)下,PDLLA-MAA與衣康酸酐發(fā)生自由基反應(yīng),制得衣糠酸酐改性的聚乳酸,縮寫為PITLA。 2)功能聚乳酸前體Ⅲ(DPITLA)的制備:以PITLA為原料,與脂肪族二胺進行反應(yīng),制備二胺改性的功能聚乳酸前體Ⅲ(DPITLA)。FTIR、1HNMR的分析結(jié)果表明DPITLA已成功合成,茚三酮顯色法測試可知合成的DPITLA中的HMD的接枝率為4.23%、5.79%。 2.梯度濃度功能聚乳酸的制備與表征 ①黏附性多肽的引入——促黏附功能聚乳酸的制備 以DPLA作為功能聚乳酸前體,,以二環(huán)己基碳二亞胺(DCC)為偶聯(lián)劑,通過粘附性四肽RGDS和膠原蛋白上的氨基與功能聚乳酸前體DPLA上的羧基發(fā)生酰胺化反應(yīng),從而將RGDS和膠原蛋白引入到DPLA側(cè)鏈中,制備出具有促細胞黏附活性的功能聚乳酸。通過控制反應(yīng)混合物中粘附性多肽RGDS或膠原的濃度可以調(diào)節(jié)聚合物鏈上多肽的濃度。由實驗結(jié)果可知:RGDS濃度低時,其轉(zhuǎn)化率為40%~60%,而RGDS濃度高時,其轉(zhuǎn)化率只有10%~30%;在DPLA上引入膠原時存在著同樣的規(guī)律,但是總體而言,膠原的轉(zhuǎn)化率明顯低于RGDS的轉(zhuǎn)化率。 ②M GF-Ct24E肽的引入——抗應(yīng)力遮擋功能聚乳酸的制備 MGF-Ct24E是一種含有24個氨基酸的多肽,采用類似于引入RGDS的方法將MGF-Ct24E引入到DPLA中,制得MGF-PLA。采用FTIR和1H NMR對MGF-PLA的結(jié)構(gòu)進行了定性表征,結(jié)果表明,MGF已成功引入到DPLA中。采用氨基酸分析法進一步定量檢測MGF-PLA中MGF-Ct24E的含量。從分析結(jié)果可見,相對于RGDS含量的分析,MGF的分析難度提高,與理論值存在偏差。選擇結(jié)構(gòu)較為穩(wěn)定的氨基酸作為基準進行分析時,得到MGF-Ct24E在MGF-PLA中的含量為0.31umol/g、0.55umol/g、0.83umol/g。 ③甘油磷脂膽堿的引入——抗血小板凝聚/抗炎癥活性功能聚乳酸的制備 以MPLA為前體,通過甘油磷脂膽堿(GPC)中的羥基與MPLA中的酸酐直接進行反應(yīng),從而將甘油磷脂膽堿引入到MPLA側(cè)鏈中,制得GPC-PLA。FTIR、13C NMR的表征結(jié)果表明甘油磷脂膽堿已經(jīng)成功接枝到聚乳酸分子上,由XPS的定量結(jié)果可知聚合物中各原子個數(shù)百分比。 3.功能聚乳酸的結(jié)構(gòu)及性能研究 ①化學(xué)結(jié)構(gòu):通過側(cè)鏈接枝的方法引入不同的活性因子,為聚乳酸表面提供了不同化學(xué)官能團,尤其是通過側(cè)鏈接枝的方法在聚乳酸上引入了不同的支化結(jié)構(gòu),從而為后續(xù)細胞相容性實驗提供不同基材。 ②拓撲結(jié)構(gòu):由于不同的活性因子具有不同的分子結(jié)構(gòu)及分子量,在溶劑中溶解時具有不同的團狀結(jié)構(gòu),從而獲得具有不同拓撲結(jié)構(gòu)的聚乳酸表面。 ③親疏水性:親疏水性的結(jié)果表明,引入不同的活性因子后,隨著活性因子分子量的增大,功能聚乳酸的親水性提高;隨著引入活性因子濃度的提高,功能聚乳酸的親水性提高。 4.功能聚乳酸細胞相容性研究 本研究以成骨細胞為模型細胞,從細胞形態(tài)、粘附力和鋪展、細胞增殖能力、功能特性及血液相容性幾個方面考察了各類活性因子對功能化聚乳酸生物相容性的影響。結(jié)果表明: ①低濃度黏附因子就可以提高細胞的生物相容性。 ②高濃度黏附因子與低濃度時相比,對細胞的黏附性能影響不明顯,但是細胞的增殖活力明顯提高。 ③MGF-Ct24E通過側(cè)鏈接枝的方式引入到聚乳酸中,隨著MGF-Ct24E含量的提高,材料表面的細胞生長能力增強, MGF-Ct24E引入后成骨細胞具有顯著分化、礦化功能,但相對于黏附肽因子,其分化和礦化延后。MGF-Ct24E引入后在細胞上可以獲得與應(yīng)力加載一樣的效果,有望為制備抗應(yīng)力遮擋骨修復(fù)材料提供基礎(chǔ)。 ④磷脂膽堿通過側(cè)鏈接枝的方法引入聚乳酸中,降低了纖連蛋白在材料表面的吸附;降低了血小板在聚乳酸上的黏附;磷脂膽堿模擬細胞膜的結(jié)構(gòu),較好地保持了吸附蛋白的特異構(gòu)象,進而促進細胞的黏附和生長。這為骨修復(fù)用聚乳酸的應(yīng)用提供了一個契機。
[Abstract]:At present, natural disasters, traffic accidents, injuries, sports injuries, bone injury caused by bone tumor resection, congenital bone disease, metabolic osteoporosis (OP), and bone damage caused by fracture of bone after various kinds of bone repair have become the greatest health diseases that threaten people, and are widely concerned around the world. According to us statistics, this is a year in the world. The cost of medical treatment is about 17 billion dollars, and 30 million people enter clinical treatment each year in our country. This has formed a strong global economic and social demand. Therefore, the preparation of bone repair substitute materials with clinical significance is very important. This study starts with the problems faced by the existing bone repair and reimplantation into the body, and the clinical bone approved by FDA. Polylactic acid (PLA) is used as the basic raw material to promote adhesion factor RGDS/ collagen, anti stress shielding factor MGF-Ct24E, anti platelet aggregation / anti inflammatory factor glycerin choline as model active molecule, and establish a technical platform to covalently introduce RGDS/ collagen, MGF-Ct24E and glycerin phosphatidylcholine, and take osteoblast as the osteoblast. In the model cells, the effects of these factors on osteoblasts were investigated in vitro, and the optimum concentration was sought. The aim was to provide a theoretical and technical basis for the design and preparation of bone repair and replants with full biological activity, as well as for the preparation of adhesion activity, anti stress shielding activity and anti platelet aggregation / anti-inflammatory activity. It lays the foundation for the new multifunctional bone repair material.
The main contents and conclusions of this paper are as follows:
Preparation and characterization of 1. functional poly (lactic acid) precursor
Preparation of functional poly lactic acid precursor I, II modified by side link
1) the preparation of functional poly (lactic acid) precursor: maleic anhydride modified polylactic acid (MPLA): maleic anhydride was introduced into the main chain of polylactic acid on CH with molecular weight distribution within 1.3 and the molecular weight of about 100 thousand of polylactic acid as reaction raw material, FTIR, 13C NMR was used for qualitative evaluation by free radical reaction, and the Luo Danming colorimetric method was used for MPLA MAH was used for quantitative analysis. The results showed that maleic anhydride was successfully introduced on the side chain of polylactic acid. At least three maleic anhydride concentration gradients were achieved on the polylactic acid side chain with a molecular weight of about 100 thousand: 1.53%, 2.45%, 3.04%.
2) the preparation of functional poly (lactic acid) precursor II is the preparation of two amine modified polylactic acid (DPLA): using the three concentrations of maleic anhydride modified polylactic acid as the substrate, the aliphatic two amine and the anhydride group can be acylated, and the aliphatic two amine with the active reaction end is introduced on the side chain of the polylactic acid. FTIR, 13C NMR were used to evaluate the active active sites of various active factors. The results showed that two amine was successfully introduced on the side chain of polylactic acid. It was found that the content of two amine in the two amine modified polylactic acid was 1.37%, 2.20%, 2.59%, and the function needed for subsequent reaction was prepared. The precursor of polylactic acid.
Preparation of functional poly (lactic acid precursor III) modified by main chain copolymerization
In order to further improve the active reaction site on polylactic acid and to introduce a higher content of active factors, the reactive active group was introduced by the main chain copolymerization method, and the functional poly (lactic acid) precursor was prepared.
1) preparation of poly (lactic acid) modified polylactic acid (PITLA): using D, L- lactide as raw material and Sn (Oct) 2 as initiator, low molecular weight polylactic acid was synthesized by melting polymerization. To improve the rate of subsequent reaction, the molecular weight of polylactic acid was controlled at 5000. and then it was reacted with methacrylic anhydride (MAA) to produce PDLLA-MAA. finally. A free radical reaction of PDLLA-MAA with itaconic anhydride was initiated by peroxide benzoyl peroxide (BPO), and the polylactic acid anhydride modified poly (lactic acid) was abbreviated as PITLA.. Two
2) preparation of functional poly (lactic acid) precursor III (DPITLA): using PITLA as raw material and reacting with aliphatic two amines to prepare functional poly (DPITLA).FTIR modified by two amines, 1HNMR analysis showed that DPITLA had been successfully synthesized. The grafting rate of HMD in DPITLA was 4.23%, 5.79%.
Preparation and characterization of poly (lactic acid) with 2. gradient concentration
Introduction of adhesion peptides -- Preparation of poly (lactic acid) for adhesion function
DPLA is used as functional poly (lactic acid) precursor and dicyclohexyl carbon two imide (DCC) as coupling agent. Amidating reaction of the amino group on the carboxyl group DPLA on the functional polylactic acid precursor by the amino group on the adhesive four peptide RGDS and collagen is introduced, and RGDS and collagen are introduced into the DPLA side chain, and the functional polylactic acid with cell adhesion activity is prepared. The concentration of polypeptides on the polymer chain can be regulated by controlling the concentration of RGDS or collagen in the reaction mixture. It is known from the experimental results that when the concentration of RGDS is low, the conversion rate is 40%~60%, while the conversion rate is only 10%~30% when the concentration of RGDS is high; there is the same rule when the collagen is introduced to DPLA, but collagenous as a whole, collagen is in general. The conversion rate is obviously lower than the conversion rate of RGDS.
Introduction of M GF-Ct24E peptide -- Preparation of poly (lactic acid) with stress shielding function
MGF-Ct24E is a polypeptide containing 24 amino acids. MGF-Ct24E is introduced into DPLA by a method similar to the introduction of RGDS. The structure of MGF-PLA is characterized by FTIR and 1H NMR. The results show that MGF has been successfully introduced into DPLA. The amino acid segregation method is used to further determine the content of MGF-PLA in the MGF-PLA. From the analysis results, compared with the analysis of RGDS content, the analysis of MGF is more difficult to improve, and there is a deviation from the theoretical value. The content of MGF-Ct24E in MGF-PLA is 0.31umol/g, 0.55umol/g, 0.83umol/g. when selecting the more stable amino acid as the benchmark.
Introduction of glyceryl phosphatidylcholine -- Preparation of functional poly (lactic acid) against platelet aggregation / anti-inflammatory activity
Using MPLA as the precursor, the glycerin phosphatidylcholine was directly reacted with the acid anhydride in MPLA, and glycerin phosphatide choline was introduced into the MPLA side chain, and GPC-PLA.FTIR was prepared. The characterization of 13C NMR showed that the glycerin phosphatide choline had been successfully grafted onto the polylactic molecules and the atoms in the polymer were identified by the quantitative results of XPS. The percentage of the number.
Study on the structure and properties of 3. functional polylactic acid
(1) chemical structure: the introduction of different active factors through the side chain grafting method provides different chemical functional groups for the polylactic acid surface, especially by introducing different branching structures on polylactic acid by side chain grafting, thus providing different substrate for the subsequent cell compatibility test.
(2) topological structure: because different active factors have different molecular structures and molecular weights, they have different mass structure in solvent dissolving, so that the surface of polylactic acid with different topological structures is obtained.
Hydrophobicity: the hydrophobicity results showed that the hydrophilicity of functional polylactic acid was improved with the increase of the molecular weight of active factors, and the hydrophilicity of functional polylactic acid increased with the increase of the concentration of active factors.
Study on the compatibility of 4. functional polylactic acid cells
In this study, the effects of various active factors on the biocompatibility of functional polylactic acid were investigated from the aspects of cell morphology, adhesion and spreading, cell proliferation, functional properties and blood compatibility.
(1) low concentration of adhesion factors can enhance cell biocompatibility.
(2) compared with low concentration, high concentration of adhesion factor had little effect on cell adhesion, but cell proliferation activity increased significantly.
(3) MGF-Ct24E was introduced into polylactic acid by side chain grafting. With the increase of MGF-Ct24E content, the cell growth ability of the surface was enhanced. After MGF-Ct24E was introduced, the osteoblasts had significant differentiation and mineralization, but relative to the adhesion peptide factor, the differentiation and mineralization after the introduction of.MGF-Ct24E could be obtained and stress on the cell. Loading the same effect is expected to provide a basis for preparing stress shielding bone repair materials.
(4) phosphatidylcholine is introduced into polylactic acid by side chain grafting, which reduces the adsorption of fibronectin on the surface of the material, reduces the adhesion of platelets on the polylactic acid, and the structure of the phosphatidylcholine mimic cell membrane, which keeps the specific conformation of the adsorbed protein, and thus promotes cell adhesion and growth. This is a polyemulsion for bone repair. The application of acid provides an opportunity.

【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2012
【分類號】:R318.08

【相似文獻】

相關(guān)期刊論文 前10條

1 張雅博;馬秦;程曉兵;王一波;杜兆杰;雷德林;;鈦網(wǎng)成型自體顆粒骨復(fù)合骨修復(fù)材料修復(fù)兔下頜骨缺損的實驗研究[J];中國口腔頜面外科雜志;2011年03期

2 段友容;陳繼鏞;張興棟;;膠原作為骨修復(fù)材料的研究進展[J];材料導(dǎo)報;2001年10期

3 葉建新;沈如杰;;新型含重組人骨形態(tài)發(fā)生蛋白2骨修復(fù)材料的制備及生物學(xué)評價[J];中國組織工程研究與臨床康復(fù);2008年45期

4 徐錚青;林軍;徐靖宏;;磷酸鈣骨水泥理化性能改進的研究進展[J];材料科學(xué)與工程學(xué)報;2009年04期

5 王瑋竹,朱晏軍,閻玉華;顱骨修復(fù)材料的研究進展[J];化工新型材料;2004年09期

6 邱凱,萬昌秀,陳馨;不同摻鍶聚磷酸鈣骨修復(fù)材料的抗壓強度評價[J];口腔材料器械雜志;2005年02期

7 趙甜娜;韓金祥;王世立;賈金秋;張維東;欒中華;;重組人成骨蛋白-1骨修復(fù)材料的毒性研究[J];山東醫(yī)藥;2006年29期

8 甘少磊;馮慶玲;;卡拉膠/納米羥基磷灰石/膠原可注射骨修復(fù)材料的制備與表征[J];中國醫(yī)學(xué)科學(xué)院學(xué)報;2006年05期

9 郭志敏;陳福;趙恩錄;武麗華;;有機-無機雜化材料在骨修復(fù)中的應(yīng)用[J];化工新型材料;2007年07期

10 吳琳;徐興祥;李波;王祿增;戚忠政;曹小明;田沖;張勁松;;泡沫碳化硅的生物相容性[J];材料研究學(xué)報;2008年01期

相關(guān)會議論文 前10條

1 宋萌;;生物活性骨修復(fù)材料修復(fù)頜骨缺損的動態(tài)療效觀察[A];中華口腔醫(yī)學(xué)會全科口腔醫(yī)學(xué)專業(yè)委員會第一次學(xué)術(shù)年會會議論文集[C];2009年

2 韓金明;張明;;納米羥基磷灰石/聚酰胺66復(fù)合骨修復(fù)材料的研究進展[A];2009年浙江省骨科學(xué)學(xué)術(shù)年會論文匯編[C];2009年

3 賀永進;姬彥輝;騰宇;李景峰;王玉龍;郭曉東;;BMP-2活性肽/納米晶膠原基骨修復(fù)材料復(fù)合移植修復(fù)大鼠顱骨缺損的實驗研究[A];中華醫(yī)學(xué)會第三次骨質(zhì)疏松和骨礦鹽疾病中青年學(xué)術(shù)會議論文匯編[C];2011年

4 李學(xué)敏;劉玲蓉;周志敏;張其清;;膠原/羥基磷灰石復(fù)合功能性骨修復(fù)材料的研究現(xiàn)狀和展望[A];中國儀器儀表學(xué)會醫(yī)療儀器分會2010兩岸四地生物醫(yī)學(xué)工程學(xué)術(shù)年會論文集[C];2010年

5 常江;;含鎂硅酸鹽生物活性陶瓷骨修復(fù)材料的制備及性能研究[A];生物材料與再生醫(yī)學(xué)的現(xiàn)狀與未來——2010年第十屆上海地區(qū)醫(yī)用生物材料研討會論文摘要匯編[C];2010年

6 宋巍;丁玉龍;王踐云;余喜訊;萬昌秀;;摻雜骨修復(fù)材料CPP結(jié)構(gòu)對降解行為的影響[A];2007年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2007年

7 潘健;田杰謨;董利民;王晨;;磷酸鈣礦物相骨修復(fù)材料固化過程的XRD分析[A];中國生物醫(yī)學(xué)工程學(xué)會第六次會員代表大會暨學(xué)術(shù)會議論文摘要匯編[C];2004年

8 王迎軍;;生物活性骨修復(fù)材料及骨組織工程支架的納米仿生及生物礦化[A];中國硅酸鹽學(xué)會2003年學(xué)術(shù)年會論文摘要集[C];2003年

9 譚慶剛;任杰;;骨修復(fù)材料的仿生設(shè)計[A];生物材料與再生醫(yī)學(xué)的現(xiàn)狀與未來——2010年第十屆上海地區(qū)醫(yī)用生物材料研討會論文摘要匯編[C];2010年

10 王小紅;馬建標(biāo);顏永年;熊卓;林峰;吳任東;張人佶;盧清萍;;幾種甲殼素衍生物增強的磷酸鈣骨水泥[A];人才、創(chuàng)新與老工業(yè)基地的振興——2004年中國機械工程學(xué)會年會論文集[C];2004年

相關(guān)重要報紙文章 前10條

1 夏大;廈大用貝殼研制出新型骨修復(fù)材料[N];中國海洋報;2010年

2 福于;羥基磷灰石基骨修復(fù)材料填補國家空白[N];中國漁業(yè)報;2010年

3 白文;智能骨修復(fù)材料研發(fā)有新突破[N];中國醫(yī)藥報;2011年

4 學(xué)生記者 吳婷婷;破譯人骨組裝“密碼” “斷骨再生”夢想成真[N];新清華;2009年

5 本報記者 趙玲 輯 元直;讓“器官再生”成為可能[N];中國醫(yī)藥報;2009年

6 于洋 張兆軍;骨修復(fù)新技術(shù)可提高骨缺損愈合能力和質(zhì)量[N];科技日報;2011年

7 李海 朱義偉;創(chuàng)新科技 造福人類[N];四川日報;2006年

8 中國科學(xué)院上海硅酸鹽研究所生物材料與組織工程研究中心主任 常江 早報記者 羅燕倩 整理;為人體打造“配件工廠”[N];東方早報;2011年

9 健康時報特約記者  俞興;納米人工骨臨床應(yīng)用已經(jīng)成熟[N];健康時報;2006年

10 蘇奎;人工骨開發(fā)駛?cè)肟燔嚨繹N];醫(yī)藥經(jīng)濟報;2010年

相關(guān)博士學(xué)位論文 前10條

1 傅亞;骨修復(fù)因子功能化聚乳酸的制備及其生物相容性研究[D];重慶大學(xué);2012年

2 周奐君;生物活性骨修復(fù)材料的構(gòu)建與生物學(xué)響應(yīng)研究[D];華東理工大學(xué);2011年

3 黃美娜;可預(yù)防骨不連的骨修復(fù)用新型形狀記憶聚氨酯-脲的研究[D];重慶大學(xué);2010年

4 金合;可注射骨修復(fù)材料結(jié)合骨碎補總黃酮修復(fù)鼠骨缺損[D];北京中醫(yī)藥大學(xué);2010年

5 戴程隆;用于局部快速止血和骨修復(fù)的可降解介孔硅基干凝膠設(shè)計制備與性能研究[D];華東理工大學(xué);2011年

6 阮長順;新型骨修復(fù)材料可降解哌嗪基聚氨酯脲的研究[D];重慶大學(xué);2011年

7 劉軍;絲裂霉素聚乳酸控釋膜預(yù)防脊柱術(shù)后粘連的研究[D];第二軍醫(yī)大學(xué);2010年

8 張學(xué)慧;明膠/磷酸三鈣復(fù)合納米纖維膜的成骨誘導(dǎo)機制及骨修復(fù)應(yīng)用研究[D];吉林大學(xué);2012年

9 施雪濤;骨修復(fù)藥物控釋微球支架的多級構(gòu)建及干細胞介導(dǎo)分化研究[D];華南理工大學(xué);2010年

10 楊帆;生物響應(yīng)性降解水凝膠的制備及其骨修復(fù)性能的研究[D];華東理工大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 張雅博;鈦網(wǎng)成型自體顆粒骨復(fù)合骨修復(fù)材料修復(fù)兔下頜骨缺損的實驗研究[D];第四軍醫(yī)大學(xué);2011年

2 謝會麗;拉伸工藝對單軸取向聚乳酸薄膜結(jié)構(gòu)與性能的影響[D];鄭州大學(xué);2012年

3 陳鴻儒;主鏈及側(cè)鏈接枝型液晶—聚乳酸光電材料的制備與表征[D];山東大學(xué);2010年

4 趙澎;原位增強型磷酸鈣基骨修復(fù)材料的制備與性能研究[D];暨南大學(xué);2010年

5 劉高梅;擠出法制備多孔磷酸鈣骨修復(fù)材料[D];華南理工大學(xué);2011年

6 高虎亮;改性聚乳酸的研究[D];中國地質(zhì)大學(xué);2012年

7 孫傳鋒;新型納米復(fù)合骨修復(fù)材料明膠—羥基磷灰石—米諾環(huán)素(Gel-HA-M)的抗菌性研究[D];安徽醫(yī)科大學(xué);2011年

8 何釗煊;聚磷酸酯/β-TCP骨修復(fù)材料的制備及體外模擬生物礦化[D];華中科技大學(xué);2011年

9 連鑫鑫;生物活性多糖及生物酶對醫(yī)用聚乳酸材料表面修飾的研究[D];武漢理工大學(xué);2012年

10 陳輝玲;骨修復(fù)用SMPU電紡薄膜的制備、響應(yīng)性能及其對成骨細胞生長行為的影響[D];西北農(nóng)林科技大學(xué);2012年



本文編號:1889616

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/swyx/1889616.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bec74***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com