天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于區(qū)間預測模型的流感趨勢預測

發(fā)布時間:2019-01-01 08:14
【摘要】:在流感暴發(fā)趨勢預測模型的研究中,傳統(tǒng)點預測是估計預測平均值的隨機變量,不包含置信水平和預測區(qū)間范圍等輔助決策的有用信息,導致決策者不能很好把握流感發(fā)展趨勢。為了解決上述問題,提出利用神經(jīng)網(wǎng)絡上下限估計方法(LUBE)建立預測區(qū)間(PI)發(fā)展了流感趨勢區(qū)間預測模型,提出了評價預測區(qū)間的寬度范圍組合指標(CWC),運用蟻群算法對神經(jīng)網(wǎng)絡區(qū)間預測模型進行訓練,并運用上述模型對傳染病等應急醫(yī)療數(shù)據(jù)進行了仿真。為了衡量預測區(qū)間性能,改進模型與Delta、Bayesian、Holt指數(shù)平滑和支持向量機等常用預測模型建立的預測區(qū)間進行了對比。結(jié)果表明蟻群算法神經(jīng)網(wǎng)絡區(qū)間預測模型能夠?qū)α鞲汹厔葸M行更為有效的分析和預測。
[Abstract]:In the research of influenza outbreak trend prediction model, the traditional point forecast is a random variable to estimate the average value of the forecast, and it does not contain useful information for auxiliary decision, such as confidence level and range of prediction interval, etc. As a result, policy makers can not grasp the trend of influenza. In order to solve the above problems, a prediction interval (PI) model is developed by using the upper and lower bound estimation method of neural network (LUBE) to develop the interval forecasting model of influenza trend. The combined index (CWC), of the width range for evaluating the prediction interval is proposed. Ant colony algorithm is used to train the interval prediction model of neural network, and the above model is used to simulate the emergency medical data such as infectious diseases. In order to evaluate the performance of prediction interval, the improved model is compared with the prediction interval established by Delta,Bayesian,Holt exponential smoothing and support vector machine. The results show that the interval prediction model of ant colony algorithm (ACA) neural network can effectively analyze and predict the trend of influenza.
【作者單位】: 上海交通大學機械動力工程學院;
【分類號】:R181.3;TP18

【參考文獻】

相關期刊論文 前7條

1 朱大奇;人工神經(jīng)網(wǎng)絡研究現(xiàn)狀及其展望[J];江南大學學報;2004年01期

2 許可;李亮;祖榮強;霍翔;嵇紅;湯奮揚;;江蘇省甲型H1N1流感暴發(fā)疫情的流行特征和影響因素分析[J];江蘇預防醫(yī)學;2010年01期

3 肖洪;田懷玉;林曉玲;高立冬;代翔宇;張錫興;陳碧云;趙f,

本文編號:2397257


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/liuxingb/2397257.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶5b22a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com