饑餓誘導(dǎo)環(huán)境下成骨細(xì)胞自噬與凋亡作用狀況的初步研究
[Abstract]:In the process of orthodontic treatment, a large number of osteoblasts in alveolar bone on the pressure side will die and osteoclasts will proliferate, leading to alveolar bone resorption; osteoblasts on the tension side will proliferate, alveolar bone new bone formation, which occurs in the alveolar bone tissue remodeling is the basis of orthodontic tooth movement [1]. Current studies suggest that a large number of osteoblasts, including osteoblasts, in the pressure-side alveolar bone die because of changes in the local microenvironment of the alveolar bone under orthodontic forces, including narrowing of the pressure-side periodontal ligament, narrowing of the capillaries that provide nutrients and oxygen under orthodontic forces, narrowing of the lumen, blocking of circulation and decreasing of blood supply [2]. This leads to a hypoxic, nutrient-deficient starvation environment for alveolar bone cells on the pressure side [3]. How does this environment result in alveolar bone resorption and a large number of alveolar bone cells on the pressure side die? Three ways of cell death: necrosis, autophagy, apoptosis [4], alveolar bone remodeling belongs to teeth under the appropriate orthodontic force. Physiological remodeling, bone tissue will not occur cell necrosis and other pathological changes, autophagy and apoptosis belong to the cell-dominated mode of programmed death, they are respectively in the pressure side of bone tissue cell death in the process of what role? How is the relationship? This study aimed at this problem, through the establishment of beagle dogs correct The expression of autophagy and apoptosis in pressure-side alveolar bone during orthodontic remodeling was studied in vivo. The expression of autophagy and apoptosis in osteoblasts under starvation was observed in vitro, and the relationship between autophagy and apoptosis was studied. The main contents of this study include the following two aspects: 1. Animal experimental study on the changes of autophagy and apoptosis of alveolar bone cells during tooth movement Objective: To establish a model of orthodontic tooth movement in beagle dogs and detect the morphological changes of alveolar bone on the pressure side and autophagy and apoptosis in bone tissue cells under orthodontic force. Methods: Twenty-four canines of six adult beagles were randomly divided into two groups: the control group and the orthodontic afterburner group. The effect of orthodontic force on tooth movement was observed. The remodeling of alveolar bone tissue on the pressure side was analyzed by he method. The effects of autophagy and apoptosis in alveolar bone tissue on the pressure side were analyzed by immunohistochemical staining and Western blot. Compared with the control group, the distal movement of canines in each experimental group was obvious (p0.05), and the distal movement of teeth increased with the increase of orthodontic force (p0.05). 2) Western blot showed that compared with the blank control group, the transformation rate of lc3-II/lc3-I in alveolar bone tissue on the pressure side increased rapidly, reached the peak on 7 days (p0.05), and caspase-3 protein expression level reached the peak on 7 days. The results of he showed that the absorption of alveolar bone tissue on the pressure side was aggravated with the extension of orthodontic treatment time compared with the blank control group; the results of immunohistochemical staining showed that LC3 staining was positive in the 7-day group and 28-day group, and caspase 3 staining was positive in the 14-day group and 28-day group after orthodontic treatment. CONCLUSION: The autophagy of alveolar bone cells on the pressure side was enhanced at the early stage under the sustained effect of appropriate orthodontic force, but the bone resorption was not obvious at this time. With the sustained effect of orthodontic force, the autophagy was weakened, the apoptosis began to appear, and the bone resorption was aggravated. Early enhancement of autophagy may be a tissue protective mechanism that delays apoptosis. 2. Experimental study on the interaction between autophagy and apoptosis of mouse osteoblasts in starvation-induced environment Objective: To investigate the occurrence and correlation of autophagy and apoptosis in mouse osteoblasts under starvation. C3t3-e1 mouse osteoblasts were divided into starvation-inducing group and starvation-inducing group pretreated with 3-methyladenine (3-ma). starvation-inducing group was treated with simple starvation-inducing method and cultured with earle's balanced salt solution (ebss) for 1 h, 2 h, 3 h, 4 h, 5 h, 6 h.3-ma, which was a specific autophagy inhibitor. In the starvation-induced group, the normal cultured osteoblasts were pretreated with 3-MA for 1 h, then cultured in EBSS equilibrium salt solution for 1 h, 2 h, 3 h, 4 h, 5 h and 6 h. The morphological changes of autophagy and apoptosis of osteoblasts in the starvation-induced group were observed by transmission electron microscopy. Western blot immunoblot and Annexin V-FITC/PI flow cytometry were used. The expression of autophagy-related protein LC3 and apoptosis-related protein caspase-3 in mouse osteoblasts were detected by cytometry. Results: The results of transmission electron microscopy showed that autophagy was predominant before 2 hours and apoptosis was predominant after 2 hours under starvation-induced condition, and the level of apoptosis gradually increased with the prolongation of time. Compared with starvation induction group, the level of LC3 transformation in 3-MA pretreatment starvation induction group decreased significantly at 1 h, 2 h, 3 h, 4 h, 5 h and 6 h (P 0.05). The expression of caspase-3 protein increased at 1 h, 2 h, 3 h and 4 h (P 0.05), but there was no difference between 0 h, 5 h and 6 h (P 0.05). The results of Annexin V-FITC/PI showed that the expression level of caspase-3 protein in starvation induction group was significantly lower than that in starvation induction group. Compared with 3-MA pretreatment, 3-MA pretreatment only promoted apoptosis at 1 h, 2 h, 3 h and 4 h (P 0.05), but did not affect apoptosis at 0 h, 5 h and 6 h (P 0.05). Conclusion: Autophagy in the early stage of osteoblasts in starvation-induced environment may be a protective mechanism to prevent cell death and delay the time of apoptosis. External experimental results preliminarily show that the autophagy enhancement of alveolar bone tissue on the pressure side may be a protective mechanism of bone tissue cells against oxygen and nutritional deficiency, which can antagonize and delay the occurrence of apoptosis. The cells will be destroyed by the enhancement of apoptosis and the bone tissue will also be absorbed.
【學(xué)位授予單位】:第四軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R783.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葉青;鄭民華;;自噬的分子機(jī)制與病理生理意義[J];國(guó)際病理科學(xué)與臨床雜志;2007年04期
2 何韜;王海杰;譚玉珍;;自噬在細(xì)胞存活和死亡中的作用[J];生理科學(xué)進(jìn)展;2008年01期
3 張志才;邵增務(wù);;自噬分子機(jī)制的研究進(jìn)展[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2008年01期
4 趙勇;師長(zhǎng)宏;伍靜;張海;;自噬的形態(tài)特征及分子調(diào)控機(jī)制[J];中國(guó)比較醫(yī)學(xué)雜志;2010年10期
5 王梅;李慶林;;自噬與癌癥的治療[J];安徽醫(yī)藥;2010年08期
6 伍靜;趙勇;師長(zhǎng)宏;張海;;自噬的形態(tài)特征及分子調(diào)控[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2010年20期
7 王雄;譚璐;;自噬研究進(jìn)展[J];亞太傳統(tǒng)醫(yī)藥;2010年10期
8 卞龍艷;;運(yùn)動(dòng)與自噬的關(guān)系進(jìn)展研究[J];齊齊哈爾醫(yī)學(xué)院學(xué)報(bào);2011年07期
9 王偉;徐忠東;陶瑞松;;腫瘤發(fā)生過程中自噬與凋亡關(guān)系的研究[J];合肥師范學(xué)院學(xué)報(bào);2011年06期
10 王光輝;;自噬與疾病[J];生物化學(xué)與生物物理進(jìn)展;2012年03期
相關(guān)會(huì)議論文 前10條
1 韋雪;漆永梅;張迎梅;;鎘、活性氧自由基與自噬發(fā)生的分子機(jī)制[A];中國(guó)活性氧生物學(xué)效應(yīng)學(xué)術(shù)會(huì)議論文集(第一冊(cè))[C];2011年
2 秦正紅;粱中琴;陶陸陽;黃強(qiáng);劉春風(fēng);蔣星紅;倪宏;邢春根;;自噬在細(xì)胞生存與死亡中的作用[A];中國(guó)藥理學(xué)會(huì)第九次全國(guó)會(huì)員代表大會(huì)暨全國(guó)藥理學(xué)術(shù)會(huì)議論文集[C];2007年
3 秦正紅;;自噬與腫瘤和神經(jīng)細(xì)胞生存——藥物作用的新靶位[A];全國(guó)生化與分子藥理學(xué)藥物靶點(diǎn)研討會(huì)論文摘要集[C];2008年
4 李芹;丁壯;;自噬功能研究進(jìn)展[A];中國(guó)畜牧獸醫(yī)學(xué)會(huì)家畜傳染病學(xué)分會(huì)第八屆全國(guó)會(huì)員代表大會(huì)暨第十五次學(xué)術(shù)研討會(huì)論文集[C];2013年
5 胡晨;張璇;滕衍斌;胡海汐;周叢照;;家蠶中自噬相關(guān)蛋白Atg8的結(jié)構(gòu)研究[A];華東六省一市生物化學(xué)與分子生物學(xué)會(huì)2009年學(xué)術(shù)交流會(huì)論文摘要匯編[C];2009年
6 陳希;李民;Xiao-Ming Yin;李林潔;;通過不同途徑誘導(dǎo)自噬的化合物對(duì)Atg9的依賴性不同[A];細(xì)胞—生命的基礎(chǔ)——中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)2013年全國(guó)學(xué)術(shù)大會(huì)·武漢論文摘要集[C];2013年
7 陳涓涓;敬靜;蔡元博;張俊龍;;針對(duì)活體細(xì)胞自噬行為的發(fā)光金屬配合物的設(shè)計(jì)[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第8分會(huì)場(chǎng)摘要集[C];2012年
8 寧曉潔;鐘自彪;王彥峰;付貞;葉啟發(fā);;缺血再灌注誘導(dǎo)小鼠肝細(xì)胞自噬[A];2013中國(guó)器官移植大會(huì)論文匯編[C];2013年
9 吳曉琦;李丹丹;鄧蓉;江山;楊芬;馮公侃;朱孝峰;;CaMKKβ磷酸化Beclin 1調(diào)控自噬及其在腫瘤治療中的作用[A];2011醫(yī)學(xué)科學(xué)前沿論壇第十二屆全國(guó)腫瘤藥理與化療學(xué)術(shù)會(huì)議論文集[C];2011年
10 周鴻雁;裴中;陳杰;申存周;錢浩;劉妍梅;冼文彪;鄭一帆;陳玲;;線粒體動(dòng)力改變參與了LRRK2突變導(dǎo)致的自噬[A];中華醫(yī)學(xué)會(huì)第十三次全國(guó)神經(jīng)病學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2010年
相關(guān)重要報(bào)紙文章 前3條
1 生命學(xué)院;俞立課題組在《科學(xué)》發(fā)文揭示自噬調(diào)控的重要機(jī)制[N];新清華;2012年
2 周飛 張粹蘭;花櫚木“自噬”可抗癌[N];廣東科技報(bào);2011年
3 張明永;水稻自噬基因研究取得新進(jìn)展[N];廣東科技報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 賈盛楠;轉(zhuǎn)錄因子p8調(diào)控自噬的功能研究[D];浙江大學(xué);2015年
2 皮會(huì)豐;DNM1L蛋白介導(dǎo)的線粒體自噬在鎘致肝臟毒性中的作用研究[D];第三軍醫(yī)大學(xué);2015年
3 李倩;miRNAs介導(dǎo)的自噬抑制在類鼻疽桿菌感染免疫逃逸中的作用機(jī)制研究[D];第三軍醫(yī)大學(xué);2015年
4 黎炳護(hù);激活TRPV1誘導(dǎo)自噬在血管平滑肌細(xì)胞泡沫化中作用及機(jī)制研究[D];第三軍醫(yī)大學(xué);2015年
5 陳江偉;自噬在椎間盤退變中的作用及機(jī)制研究[D];上海交通大學(xué);2014年
6 李榮榮;自噬在布比卡因肌毒性中的作用及機(jī)制研究[D];南京醫(yī)科大學(xué);2015年
7 王維;NF-κB信號(hào)通路參與介導(dǎo)的自噬在高血壓大鼠心血管重構(gòu)的作用研究[D];山東大學(xué);2015年
8 劉春朋;日糧硒缺乏對(duì)雞肝臟蛋白質(zhì)組學(xué)及自噬變化的影響[D];東北農(nóng)業(yè)大學(xué);2015年
9 梁蓓蓓;P53凋亡刺激蛋白ASPP2調(diào)控細(xì)胞自噬的研究[D];上海交通大學(xué);2012年
10 李少瑩;自噬在LPS誘導(dǎo)的肺泡上皮細(xì)胞死亡中的作用及機(jī)制研究[D];第三軍醫(yī)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 匡紅;Jnk2通過smARF的降解來調(diào)控壓力誘導(dǎo)的線粒體自噬及組織損傷[D];浙江理工大學(xué);2015年
2 洪永桃;自噬在類風(fēng)濕關(guān)節(jié)炎滑膜成纖維細(xì)胞中的作用及甲氨蝶呤對(duì)自噬的影響[D];川北醫(yī)學(xué)院;2015年
3 李寧;自噬在嗎啡心肌保護(hù)中的作用及機(jī)制研究[D];河北聯(lián)合大學(xué);2014年
4 劉冰;腦缺血預(yù)處理對(duì)大鼠局灶性腦缺血再灌注后自噬及凋亡的影響[D];河北聯(lián)合大學(xué);2014年
5 王存凱;microRNA-30a-5p通過抑制自噬阻止肝星狀細(xì)胞激活[D];河北醫(yī)科大學(xué);2015年
6 張宇程;泛素連接酶HOIL-1L在線粒體自噬中的功能與機(jī)制研究[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2015年
7 唐芙蓉;自噬對(duì)奶山羊雄性生殖干細(xì)胞生物學(xué)特性的影響[D];西北農(nóng)林科技大學(xué);2015年
8 陳軍童;腎損傷分子1對(duì)高糖誘導(dǎo)人腎小管上皮細(xì)胞自噬作用的影響[D];鄭州大學(xué);2015年
9 包勇;Kap1在LBH589誘導(dǎo)的乳腺癌細(xì)胞MCF-7自噬形成中的作用[D];復(fù)旦大學(xué);2013年
10 魏園玉;P53缺失型HL-60白血病細(xì)胞內(nèi)Nucleostemin下調(diào)對(duì)mTOR通路介導(dǎo)的自噬活性的影響[D];鄭州大學(xué);2015年
,本文編號(hào):2242974
本文鏈接:http://sikaile.net/yixuelunwen/kouq/2242974.html