天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 醫(yī)學(xué)論文 > 口腔論文 >

上下頜骨后牙區(qū)不同骨質(zhì)參數(shù)對微種植體周圍骨應(yīng)力分布影響的三維有限元分析

發(fā)布時(shí)間:2018-08-05 19:05
【摘要】:目的:在臨床正畸治療中,支抗的控制非常重要,直接影響到了最終的療效。隨著技術(shù)的發(fā)展,種植體支抗不斷完善。與很多傳統(tǒng)的支抗相比,種植體支抗具有創(chuàng)傷小,體積小,口內(nèi)的舒適度好,療效好等優(yōu)點(diǎn),被廣泛的應(yīng)用到了臨床治療中。雖然微種植體在臨床中應(yīng)用廣泛,但是骨-種植體界面上過大的應(yīng)力常常會造成種植體周圍骨損傷和骨結(jié)合的失敗,脫落情況時(shí)有發(fā)生,成功率約90%。其中一主要影響因素是植入部位周圍骨骼的質(zhì)量。種植體的承載能力與植入部位骨質(zhì)有很大關(guān)系,許多研究表明種植體的穩(wěn)定性與皮質(zhì)骨的厚度及密度密切相關(guān),這些骨骼參數(shù)主要為:1、植入部位的皮質(zhì)骨厚度2、皮質(zhì)骨的密度3種植體周圍松質(zhì)骨的密度。一些研究證明皮質(zhì)骨厚度越大,皮質(zhì)骨和松質(zhì)骨的密度越高就會降低種植體周圍的應(yīng)力集中,然而一些臨床研究表明皮質(zhì)骨密度過大種植體脫落率較高。目前這些參數(shù)對種植體臨床應(yīng)用的作用還不清楚,而且基于真實(shí)上下頜骨解剖數(shù)據(jù)的研究很少。三維有限元法常用來評估不同骨骼類型對種植體周圍應(yīng)力分布的影響,從而幫助研究者預(yù)測種植體加載后植入部位骨骼的應(yīng)力分布。總之,微種植體提供強(qiáng)支抗的前提是其自身的穩(wěn)定性,這與種植體周圍頜骨質(zhì)量和種植體周圍骨密度密切相關(guān)。但皮質(zhì)骨、松質(zhì)骨的厚度及密度對微型種植體穩(wěn)定性的作用尚不明確。本實(shí)驗(yàn)擬根據(jù)螺旋CT測量的上下頜骨后部數(shù)據(jù),通過建立不同類型骨骼的有限元模型,分析不同骨質(zhì)參數(shù)下微種植體-骨界面應(yīng)力分布的特征,探討不同骨質(zhì)條件對種植體穩(wěn)定性的影響,為臨床工作提供理論依據(jù)。方法:1材料與設(shè)備實(shí)驗(yàn)設(shè)備:硬件:windows 7系統(tǒng),螺旋CT軟件:Mimics、ANSYS17.0有限元分析軟件材料:純鈦,螺紋狀微型種植體。2實(shí)驗(yàn)方法2.1上下頜骨螺旋CT掃描及測量從河北醫(yī)科大學(xué)第二醫(yī)院影像科資料中選取50例上下頜骨螺旋CT掃描的13-45周歲患者數(shù)據(jù)。納入要求:1)漢族人口;2)無嚴(yán)重牙列擁擠,無滯留乳牙,無多生牙及牙齒缺失;3)無顱頜面發(fā)育畸形,左右側(cè)基本對稱,上下頜骨關(guān)系正常;4)無口腔頜面部外傷史及手術(shù)史;5)無全身骨代謝類疾病;6)無牙周病及牙槽骨病變,未行過牙根尖手術(shù);7)無牙根形態(tài)嚴(yán)重畸形;8)圖像清晰。掃描層厚0.625mm,將掃描結(jié)果進(jìn)行上、下頜骨的三維重建。測量上下頜骨微種植體常用植入部位(在第二前磨牙與第一磨牙之間頰側(cè),第一、二磨牙之間頰側(cè),距離牙槽嵴頂6mm處)的皮質(zhì)骨的厚度,皮質(zhì)骨的密度,松質(zhì)骨的密度,每處測量三次,取平均值。2.2設(shè)定骨質(zhì)參數(shù)及計(jì)算材料屬性根據(jù)上、下頜骨皮質(zhì)骨厚度、密度及松質(zhì)骨密度的測量結(jié)果,以5%及95%的數(shù)據(jù)為依據(jù),確定皮質(zhì)骨厚度為厚或薄,上頜骨皮質(zhì)骨厚度為1.0mm和1.3mm,下頜骨為1.4mm和2.7mm,所得骨密度因?yàn)榭缍容^大,根據(jù)實(shí)驗(yàn)?zāi)康膶⑵べ|(zhì)骨密度定為高、中及低三種數(shù)值,上頜皮質(zhì)骨密度分別為1200Hu、1000Hu及600Hu,下頜頜骨皮質(zhì)骨密度分別為1400Hu、1200Hu及960Hu,上下頜松質(zhì)骨密度松質(zhì)骨密度則定義為高、低兩種,上下頜分別為520Hu和820Hu。將所測得的CT值Hu通過公式:Grayvalue=Hu+1024轉(zhuǎn)化為像素值Grayvalue,按照Mimics提供的經(jīng)驗(yàn)公式:Density=47+1.122*Grayvalue,E-Modulus=-172+1.92*Density計(jì)算出不同骨密度相對應(yīng)的彈性模量見表2。并根據(jù)彈性模量定義不同骨質(zhì)的和種植體的泊松比見表3。3微種植體-頜骨的三維有限元模型的建立3.1上下頜骨模型的建立從進(jìn)行螺旋CT掃描50個病人中選擇一年輕成年男性,選取該病人的CT圖像,將其上頜第二前磨牙與第一磨牙之間的部位設(shè)定為微種植體的植入部位,并選擇此處頜骨的CT斷面,斷面的外表面為皮質(zhì)骨,內(nèi)部為松質(zhì)骨,在ANSYS軟件中將CT斷面簡化為梯形,斷面尺寸:上表面寬15mm,下表面寬13.5mm,高9.5mm。將其導(dǎo)入ANSYS軟件中,將此斷面沿著上頜骨橫斷面拉伸成20mm的六面體,構(gòu)成上頜骨的模型。設(shè)定下頜一側(cè)第二前磨牙與第一磨牙之間作為微種植體植入部位,選擇此處的頜骨CT斷面,斷面的外表面是皮質(zhì)骨,內(nèi)部為松質(zhì)骨,在ANSYS軟件中將斷面簡化成六邊形。六邊形斷面尺寸:上表面寬10.89mm,中間寬18.2mm,下表面寬11.94mm,高39mm。然后將面拉伸成長20mm的八面體,構(gòu)成了下頜骨的模型。3.2微種植體三維有限元模型的建立微種植體的幾何形態(tài)參照臨床常用尺寸:總長度12mm,骨內(nèi)段長度8mm、頸部直徑1.6mm、尖端直徑1.4mm、螺紋高度0.3mm、刃狀螺紋頂角60o、螺距0.6mm,肩臺高度2mm。在ANSYS17.0軟件中,通過延伸生成圓柱形螺桿,通過對旋轉(zhuǎn)生成螺紋,再由布爾運(yùn)算將螺桿和螺紋合成螺釘,建立微種植體模型,見Fig.1。3.3微種植體與頜骨模型的裝配3.4植入位置與角度在建立的頜骨模型上,分別在第二前磨牙與第一磨牙之間頰側(cè),距離牙槽嵴頂6mm,以與頜骨平面成45o植入微種植體。在種植體頸部施加1.96N的與牙槽骨表面平行的水平正畸力。見Fig.2。3.5建立不同參數(shù)的頜骨模型根據(jù)設(shè)定的皮質(zhì)骨厚度建立包含微種植體在內(nèi)上下頜骨不同皮質(zhì)骨厚度的模型,共4個,并根據(jù)不同的皮質(zhì)骨密度和松質(zhì)骨密度對這四個模型進(jìn)行二設(shè),建立工況共24個。用Hypermesh軟件對該模型進(jìn)行網(wǎng)格劃分,并在微種植體頂部施加平行于頜骨表面的正畸力1.96N,見Fig.2,用ANSYS軟件進(jìn)行三維模擬計(jì)算。4定義材料特性假設(shè)種植體,皮質(zhì)骨和松質(zhì)骨均為連續(xù),均勻,各向同性的線彈性材料,材料變形為彈性小變形。建立相應(yīng)的接觸面,對內(nèi)外頜骨接觸面做綁定連接,假設(shè)種植體支抗與頜骨發(fā)生骨結(jié)合,微種植體與頜骨接觸面定義為固定接觸。5分析指標(biāo)沿加力方向通過種植體的中心縱剖有限元模型,記錄種植體-骨界面的應(yīng)力峰值。6數(shù)據(jù)采集沿加力方向通過微種植體的中心縱剖有限元模型,并每隔0.1mm提取微型種植體-骨界面的應(yīng)力值和位移值,將所采集的數(shù)值制成圖表。7數(shù)據(jù)分析通過分析所采集的數(shù)據(jù),研究在1.96 N水平正畸力的作用下上下頜骨不同骨質(zhì)參數(shù)對微種植體穩(wěn)定性的影響。結(jié)果:1建立了不同皮質(zhì)骨厚度和骨密度下的微種植體-頜骨的有限元模型,它的形態(tài)及生物力學(xué)相似性高,滿足實(shí)驗(yàn)的要求;2微種植體-骨界面的應(yīng)力及位移分布情況:結(jié)果顯示所有工況的Von-Mises應(yīng)力分布均主要集中在皮質(zhì)骨區(qū)域內(nèi),應(yīng)力在皮質(zhì)骨內(nèi)迅速衰減,松質(zhì)骨區(qū)域內(nèi)的應(yīng)力很小;松質(zhì)骨內(nèi)的最大應(yīng)力值位于松質(zhì)骨和皮質(zhì)骨的交界處;最大應(yīng)力峰值出現(xiàn)在U2HL,最小應(yīng)力峰值出現(xiàn)在U1LH。位移在皮質(zhì)骨區(qū)域內(nèi)較為集中,位移峰值也位于皮質(zhì)骨內(nèi),并且在皮質(zhì)骨與松質(zhì)骨交界處迅速減小,松質(zhì)骨區(qū)域內(nèi)的位移值較小。相同條件下,上頜骨的位移峰值均較下頜骨的位移峰值大。最大位移出現(xiàn)在U1LL,最小位移出現(xiàn)在L2HH;3皮質(zhì)骨的厚度對微種植體周圍位移分布的影響:當(dāng)骨密度相同時(shí),皮質(zhì)骨厚度越大,皮質(zhì)骨內(nèi)的位移峰值減少,下頜骨的位移小于上頜。皮質(zhì)骨的厚度越大,松質(zhì)骨上的位移峰值越小;4皮質(zhì)骨厚度對微種植體周圍應(yīng)力分布的影響:當(dāng)皮質(zhì)骨密度較高或中等時(shí),皮質(zhì)骨內(nèi)的應(yīng)力峰值幾乎不受皮質(zhì)骨厚度的影響;當(dāng)皮質(zhì)骨密度較低時(shí),皮質(zhì)骨內(nèi)的應(yīng)力峰值與皮至骨厚度成正比;皮質(zhì)骨的厚度越大,松質(zhì)骨內(nèi)的應(yīng)力峰值越小;5皮質(zhì)骨密度對微種植體周圍位移分布的影響:在根據(jù)不同皮質(zhì)骨厚度建立的四個模型中,皮質(zhì)骨密度越高,皮質(zhì)骨內(nèi)的位移峰值相對減小;松質(zhì)骨內(nèi)的位移峰值也減小;6皮質(zhì)骨密度對微種植體周圍應(yīng)力分布的影響:當(dāng)皮質(zhì)骨厚度和松質(zhì)骨的密度恒定時(shí),皮質(zhì)骨的密度與皮質(zhì)骨內(nèi)應(yīng)力峰值成正相關(guān);皮質(zhì)骨的密度與松質(zhì)骨內(nèi)的應(yīng)力峰值成負(fù)相關(guān);7松質(zhì)骨密度對微種植體周圍位移分布的影響:當(dāng)皮質(zhì)骨厚度和密度恒定時(shí),松質(zhì)骨的密度越高,皮質(zhì)骨內(nèi)的位移峰值相對較小;位于松質(zhì)骨上的位移也相對較小;8松質(zhì)骨密度對微種植體周圍應(yīng)力分布的影響:當(dāng)皮質(zhì)骨厚度和密度恒定時(shí),松質(zhì)骨密度越高,皮質(zhì)骨上的應(yīng)力峰值越小,松質(zhì)骨上的應(yīng)力峰值越大。結(jié)論:1微種植體骨界面的最大應(yīng)力及位移均主要集中在皮質(zhì)骨內(nèi),并且在皮質(zhì)骨和松質(zhì)骨交界處迅速衰減,在松質(zhì)骨內(nèi)應(yīng)力和位移都很小。2微種植體-骨界面的應(yīng)力分布與皮質(zhì)骨厚度及密度都有相關(guān)性。在皮質(zhì)骨厚度越大,位于皮質(zhì)骨上的應(yīng)力峰值越大;位移峰值隨著皮質(zhì)骨厚度的增加減小。3種植體周圍骨密度是影響種植體穩(wěn)定性的關(guān)鍵因素。較高的松質(zhì)骨密度可以減少應(yīng)力和位移,有利于微種植體-骨界面的應(yīng)力分布。皮質(zhì)骨的密度與應(yīng)力峰值正相關(guān),與位移峰值為負(fù)相關(guān)關(guān)系,因此,植入部位皮質(zhì)骨的密度不宜過低或者過高。
[Abstract]:Objective: in clinical orthodontic treatment, the control of anchorage is very important and directly affects the final curative effect. With the development of technology, the implant anchorage is constantly improved. Compared with many traditional anchorages, the implant anchorage has the advantages of small trauma, small volume, good comfort in the mouth, good curative effect and so on. It has been widely used in clinical treatment. Although microimplant is widely used in clinical practice, excessive stress on the bone implant interface often causes failure of bone injury and bone binding around the implant, and occurs when abscission occurs. The success rate is about 90%., one of the main factors affecting the bone mass around the implant site, the bearing capacity of implant and the bone implanted. Many studies have shown that the stability of the implant is closely related to the thickness and density of the cortical bone. These parameters are mainly: 1, the thickness of the cortical bone of the implant site 2, the density of the cortical bone 3 around the implant, and some studies have shown that the greater the thickness of the cortical bone, the higher the density of the cortical bone and the cancellous bone will fall. Stress concentration around low implants, however, some clinical studies have shown that the exfoliate rate of cortical bone density is high. The role of these parameters for implant clinical application is not clear, and the study based on the real and mandible dissection is rarely studied. Three dimensional finite element method is used to evaluate the different bone types to the implant week. The influence of the peri stress distribution helps researchers predict the stress distribution of the implant bone after the implant is loaded. In a word, the premise of the strong support is its own stability, which is closely related to the quality of the mandible around the implant and the bone density around the implant. But the thickness and density of the cortical bone and the cancellous bone are the micro species. The effect of the implant stability is not clear. This experiment is based on the data of the upper and lower mandibles measured by spiral CT. Through the establishment of the finite element model of different types of bone, the characteristics of the stress distribution of the implant bone interface under different bone parameters are analyzed, and the effect of different bone conditions on the stability of the implant is discussed and the theory is provided for the clinical work. Basis. Method: 1 material and equipment experimental equipment: Hardware: Windows 7 system, spiral CT software: Mimics, ANSYS17.0 finite element analysis software materials: pure titanium, threaded micro implant.2 test method 2.1 maxillary spiral CT scan and measurement from the Second Medical Department of Hebei Medical University imaging department data from the Second Medical Department of the mandible spiral CT scan 13-45 year old patient data. Included: 1) Han population; 2) no severe dental crowding, no detained teeth, no teeth and tooth loss; 3) no craniofacial malformation, basic symmetry of the left and right sides, normal maxillofacial relationship; 4) no oral maxillofacial history and hand history; 5) no systemic bone metabolism disease; 6) no periodontitis and alveolar bone lesions, 6) No root tip surgery; 7) serious malformation without root morphology; 8) clear image. Scanning layer thickness 0.625mm, scanning the results on, three-dimensional reconstruction of the mandible. Measurement of the upper and lower mandibular implants (the buccal side between the second premolar and the first molar, the cheek between the first, second molar, the distance from the crest of the alveolar ridge to the 6mm) The thickness of the bone, the density of the cortical bone and the density of the cancellous bone were measured three times per place. The bone thickness, density, and the density of the cancellous bone were measured on the basis of the bone thickness, density, and the density of cancellous bone on the basis of the measurement of the bone thickness, density, and the density of cancellous bone on the average value of.2.2. The thickness of the cortical bone was thick or thin, and the thickness of the maxillary cortical bone was 1.0mm and the thickness of the maxillary cortical bone. 1.3mm, the mandible is 1.4mm and 2.7mm, the bone density is large, the cortical bone density is determined as high, medium and low three values according to the experimental purpose. The maxillary cortical bone density is 1200Hu, 1000Hu and 600Hu respectively. The mandibular cortical bone density is 1400Hu, 1200Hu and 960Hu, and the density of the cancellous bone density of the upper and lower mandibular cancellous bone density is defined as high, The lower two, the CT value Hu measured by 520Hu and 820Hu. through the formula: Grayvalue=Hu+1024 converted to pixel value Grayvalue, according to the empirical formula provided by Mimics: Density=47+1.122*Grayvalue, E-Modulus=-172+1.92*Density calculated the modulus of elasticity of different bone density corresponding to table 2. and the definition of different modulus of elasticity according to the modulus of elasticity. The bone and implant Poisson ratio see table 3.3 the three-dimensional finite element model of the micro implant jaw bone of table 3.3 the establishment of a 3.1 upper and lower mandible model selected a young adult male from 50 patients with spiral CT scan, selected the CT image of the patient, and set the position between the maxillary second premolar and the first molar as the micro implant. The implant site, and select the CT section of the jaw bone, the outer surface of the section is cortical bone, and the internal is a cancellous bone. In the ANSYS software, the CT section is simplified as a trapezium. The section size: the width of the upper surface is 15mm, the lower surface is 13.5mm, and the high 9.5mm. is introduced into the ANSYS software, and the section is stretched along the maxillary cross section into the hexahedron of 20mm, and the upper jaw is formed into the upper jaw. Bone model. Set the second premolar and first molar between the mandible and the first molar as the implant site, select the CT section of the jaw bone here, the outer surface of the section is the cortical bone, the internal is the cancellous bone. In the ANSYS software, the section is simplified into hexagon. The hexagon section size: the width of the upper surface is 10.89mm, the middle width is 18.2mm, the lower surface is 11.94m wide 11.94m M, high 39mm. then stretched the surface into the eight surface of 20mm, forming a three-dimensional finite element model of the mandible model of the.3.2 micro implant. The geometric shape of the micro implant was established with reference to the common clinical dimensions: the total length 12mm, the length of the bone segment 8mm, the neck diameter 1.6mm, the tip diameter 1.4mm, the thread height 0.3mm, the blade like thread top 60o, and the pitch 0.6mm, In the ANSYS17.0 software, the shoulder height 2mm. generates a cylindrical screw by extending the screw and the screw and screw synthesis screw by the Boolean operation. The micro implant model is established by Boolean operation. The position and angle of the assembly of the Fig.1.3.3 micro implant and the jaw model are found in the second premolars, respectively, on the established jaw model. The buccal side between the first molar and the top of the alveolar ridge 6mm to implant the microimplant with the plane of the jaw 45o. The horizontal orthodontic force parallel to the surface of the alveolar bone was imposed on the neck of the implant. A different parameter of the jaw bone model was established to establish the different cortex of the upper and lower mandibles, including the microimplant, based on the set cortical bone thickness. The model of bone thickness is 4, and the four models are set up according to the different cortical bone mineral density and the density of the cancellous bone. 24 models are set up. The model is meshed with Hypermesh software, and the orthodontic force parallel to the surface of the jaw is applied to the top of the micro implant. Fig.2 is used to simulate.4 with ANSYS software. The material characteristics assume that the implant, the cortical bone and the cancellous bone are continuous, homogeneous, isotropic linear elastic materials, and the material is deformed into small elastic deformation. The corresponding contact surface is established to bind the contact surface of the internal and external jaw. It is assumed that the implant anchorage is associated with the bone of the jaw, and the contact surface of the implant and the jaw is defined as a fixed contact. The.5 analysis index passes the finite element model of the central longitudinal profile of the implant along the direction of adding force, records the stress peak.6 of the implant bone interface, through the central longitudinal profile finite element model of the microimplant along the direction of the adding force, and extracts the stress and displacement values of the micro implant bone interface every 0.1mm, and makes the figure.7 By analyzing the data collected, the effects of different bone parameters on the stability of the micro implant were studied under the effect of 1.96 N level orthodontic force. Results: 1 the finite element model of the micro implant jaw bone under different cortical bone thickness and bone density was established, and its morphological and biomechanical similarity was high and satisfied the experiment. The stress and displacement distribution of the 2 micro implant bone interface: the results show that the stress distribution of Von-Mises in all conditions mainly concentrated in the cortical bone region, the stress is rapidly attenuated in the cortical bone, the stress in the cancellous bone is very small; the maximum stress in the cancellous bone is located at the junction of the cancellous bone and the cortical bone; the maximum stress peak is at the peak. The value of the minimum stress appears at U2HL, the peak stress peak appears in the cortical bone region, the peak of the U1LH. displacement is more concentrated, the peak displacement is also located in the cortical bone, and it decreases rapidly at the junction of the cortical bone and the cancellous bone, and the displacement value in the cancellous bone is small. The peak displacement peak of the maxilla is larger than the peak displacement of the mandible under the same condition. The minimum displacement appears at U1LL, the minimum displacement appears in L2HH; the thickness of 3 cortical bone affects the distribution of the displacement around the implant: when the bone density is the same, the greater the thickness of the cortical bone, the decrease in the peak displacement in the cortical bone, the lower displacement of the mandible is smaller than that of the maxilla. The greater the thickness of the cortical bone, the smaller the peak displacement on the cancellous bone; the 4 cortical bone thickness to the micro implant. The influence of stress distribution around the body: when the cortical bone density is high or medium, the peak stress in cortical bone is almost unaffected by cortical bone thickness; when the cortical bone density is low, the peak stress in the cortical bone is proportional to the thickness of the skin to the bone; the greater the thickness of the cortical bone, the smaller the peak stress in the cancellous bone, and the 5 cortical bone density to the micro species. The influence of the displacement distribution around the implant: the higher the cortical bone density, the relative decrease in the cortical bone displacement and the decrease in the peak displacement in the cancellous bone in the four models based on the thickness of the cortical bone, and the effect of 6 cortical bone density on the distribution of stress around the implant: when the thickness of cortical bone and the density of the cancellous bone is constant, skin The density of the cortical bone was positively correlated with the peak stress peak in the cortical bone; the density of cortical bone was negatively correlated with the peak stress in the cancellous bone; 7 the influence of the density of the cancellous bone on the distribution of the displacement around the implant: the higher the density of the cortical bone and the density, the higher the density of the cancellous bone and the smaller displacement peak in the cortical bone; located on the cancellous bone. The displacement is relatively small; 8 the effect of the density of the cancellous bone on the stress distribution around the micro implant: when the thickness and density of the cortical bone are constant, the higher the density of the cancellous bone, the smaller the peak stress on the cortical bone and the peak stress on the cancellous bone, the greater the stress and the displacement of the 1 implant bone interface are mainly concentrated in the cortical bone, and At the junction of cortical bone and cancellous bone, the stress and displacement of the cancellous bone are very small in the.2 micro implant bone interface, and the stress distribution of the bone interface is related to the thickness and density of the cortical bone. The greater the thickness of the cortical bone, the greater the peak stress on the cortical bone; the peak displacement decreases with the increase of cortical bone thickness around the.3 implant. Bone density is a key factor affecting the stability of implants. High cancellous bone density can reduce stress and displacement, and is beneficial to the stress distribution of the implant bone interface. The density of the cortical bone is positively correlated with the peak stress and is negatively related to the peak displacement. Therefore, the density of the cortical bone at the implant site should not be too low or too high.
【學(xué)位授予單位】:河北醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R783.5

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳慶生;陳笑風(fēng);單曄杰;丁熙;王慧明;;松質(zhì)骨和皮質(zhì)骨厚度對種植體周圍應(yīng)力分布的影響[J];吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2016年02期

2 周冠軍;李晨曦;焦曉麗;劉一冰;單麗華;;微型種植體直徑和長度優(yōu)化設(shè)計(jì)在Ⅳ類骨質(zhì)中應(yīng)力分布的三維有限元分析[J];中國組織工程研究;2016年12期

3 馬長柏;李金華;;口腔正畸運(yùn)用微型種植體支抗治療的療效分析[J];中華全科醫(yī)學(xué);2015年08期

4 林仰東;吳也可;;影響微種植體支抗穩(wěn)定性的相關(guān)因素[J];中國組織工程研究;2015年08期

5 楊P;林凱申;王遠(yuǎn)勤;;種植體初期穩(wěn)定性與骨質(zhì)相關(guān)性的研究進(jìn)展[J];廣東牙病防治;2014年05期

6 董晶;張哲湛;周國良;;Ⅱ類骨質(zhì)中正畸微種植體錐度及植入角度對支抗穩(wěn)定性影響的三維有限元分析[J];華西口腔醫(yī)學(xué)雜志;2014年01期

7 李聯(lián)欽;;微型種植體支抗在口腔正畸臨床中的應(yīng)用[J];中國社區(qū)醫(yī)師(醫(yī)學(xué)專業(yè));2011年30期

8 廖明華;李俊;潘超;鄧如平;;微型種植體在加強(qiáng)正畸支抗中的應(yīng)用[J];中國組織工程研究與臨床康復(fù);2011年16期

9 何艾娥;武冠英;楊琳;;微種植體支抗兩種不同植入方法穩(wěn)定性臨床應(yīng)用比較[J];臨床口腔醫(yī)學(xué)雜志;2010年02期

10 高子童;金作林;焦鴻雁;劉曉紅;吳昊;張杰;;I類骨質(zhì)中正畸微種植體支抗直徑和長度的優(yōu)化設(shè)計(jì)[J];臨床口腔醫(yī)學(xué)雜志;2010年01期

相關(guān)碩士學(xué)位論文 前6條

1 張曉麗;不同載荷方式及生理性咬合對近根微種植體穩(wěn)定性影響的三維有限元分析[D];河北醫(yī)科大學(xué);2015年

2 王倩;口腔CT骨密度測量方法的設(shè)計(jì)與實(shí)現(xiàn)[D];東北大學(xué);2013年

3 賈小s,

本文編號:2166711


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/kouq/2166711.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1d62b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
色涩一区二区三区四区| 麻豆精品在线一区二区三区| 激情图日韩精品中文字幕| 国产精品蜜桃久久一区二区| 欧美精品久久男人的天堂| 亚洲丁香婷婷久久一区| 视频一区中文字幕日韩| 国产精品夜色一区二区三区不卡| 国产精品久久三级精品| 激情爱爱一区二区三区| 五月婷婷欧美中文字幕| 亚洲伊人久久精品国产| 空之色水之色在线播放| 中文字幕亚洲精品人妻| 天堂网中文字幕在线观看| 国内胖女人做爰视频有没有| 美女激情免费在线观看| 国内九一激情白浆发布| 中文字幕禁断介一区二区| 色婷婷国产精品视频一区二区保健 | 大胆裸体写真一区二区| 五月天六月激情联盟网| 欧美午夜一区二区福利视频| 亚洲黑人精品一区二区欧美| 国产精品一区二区三区激情| 中文字幕人妻日本一区二区 | 国产国产精品精品在线| 国产日韩熟女中文字幕| 人体偷拍一区二区三区| 日韩色婷婷综合在线观看| 国产美女精品午夜福利视频| 欧美一区二区三区五月婷婷| 国产精品久久男人的天堂| 日本午夜福利视频免费观看| 欧美精品久久男人的天堂| 日韩中文字幕欧美亚洲| 日韩日韩日韩日韩在线| 欧美av人人妻av人人爽蜜桃| 青草草在线视频免费视频| 精品国产丝袜一区二区| 亚洲午夜福利视频在线|