下頜第一磨牙頰(牙合)缺損不同修復形式的三維有限元分析
本文選題:下頜第一磨牙 + 頰(牙合)缺損。 參考:《鄭州大學》2016年碩士論文
【摘要】:目的應(yīng)用三維有限元方法,建立頰(牙合)缺損根管治療后不同修復形式的下頜第一磨牙有限元模型,分別在垂直和斜向載荷下,觀察分析不同形式修復后下頜第一磨牙牙體組織的應(yīng)力峰值及應(yīng)力分布情況,尋求一種應(yīng)力分布相對合理的修復形式,為臨床中下頜第一磨牙頰(牙合)缺損根管治療后修復形式的選擇,提供生物力學方面的實驗理論數(shù)據(jù)。材料與方法1.選擇一牙列完整、咬合關(guān)系正常,無牙周疾病,下頜磨牙無明顯磨耗的年輕成年女性志愿者,通過CBCT掃描獲取實驗圖像,Mimics軟件讀取圖像并進行初步處理,Geomagic軟件精修,造型軟件Solidworks裝配各模塊和有限元軟件Ansys Workbench劃分網(wǎng)格,材料賦值,邊界設(shè)定,建立正常下頜第一磨牙的三維有限元模型。2.在正常下頜第一磨牙三維有限元模型的基礎(chǔ)上,對牙冠和根管進行形態(tài)修整以模擬根管治療和牙體組織的缺損,設(shè)定材料參數(shù),組裝各模塊并進行網(wǎng)格劃分,獲得下頜第一磨牙頰(牙合)缺損行根管治療后模型及分別以IPS e.max CAD瓷材料進行嵌體修復(嵌體Ⅰ)、樹脂內(nèi)部重建后嵌體修復(嵌體Ⅱ)、覆蓋頰尖的高嵌體修復(高嵌體Ⅰ)、覆蓋整個牙合面的高嵌體修復(高嵌體Ⅱ)、全冠修復和玻璃纖維樹脂樁核冠修復的三維有限元模型。3.在牙合面近遠中邊緣嵴中央、中央窩、近遠中頰尖頂,與牙體長軸成15°加載垂直向載荷,每個加載點力值為40N;在近遠中頰尖頰斜面中心點與牙長軸成60°加載斜向載荷,每個加載點力值為100N,模擬牙齒正中和側(cè)方咬合下的受力情況,輸出各個模型在兩種載荷下的應(yīng)力分布云圖,觀察分析剩余牙體組織的等效應(yīng)力和最大主應(yīng)力的分布及大小。結(jié)果1.建立了正常下頜第一磨牙的三維有限元基礎(chǔ)模型及頰(牙合)面大面積缺損根管治療后以ipse.maxcad嵌體、高嵌體、全冠、樁核冠等形式修復的下頜第一磨牙三維有限元模型,包括牙本質(zhì)、牙膠尖、復合樹脂、嵌體、高嵌體、覆蓋體、全冠、玻璃纖維樁、粘接層、牙周膜及牙槽骨等結(jié)構(gòu)。2.在垂直載荷下,完整牙體組織牙釉質(zhì)的等效應(yīng)力和最大主應(yīng)力主要集中在咬合力加載區(qū),峰值位于遠中頰尖;牙本質(zhì)的應(yīng)力主要集中牙頸部和根尖區(qū),峰值位于遠中根根尖區(qū)的頰側(cè)。斜向載荷下,牙釉質(zhì)的等效應(yīng)力和最大主應(yīng)力主要集中在咬合力加載區(qū),峰值均位于遠中頰尖;牙本質(zhì)的應(yīng)力主要集中于牙根的舌側(cè)面,峰值均位于近中根根尖區(qū)舌側(cè)面。3.不同形式修復后牙體組織在不同載荷下的應(yīng)力情況:(1)垂直載荷下,牙釉質(zhì)的等效應(yīng)力和最大主應(yīng)力均集中在咬合力加載區(qū),其等效應(yīng)力峰值變化為:嵌體Ⅱ嵌體Ⅰ高嵌體Ⅰ高嵌體Ⅱ。嵌體Ⅰ、嵌體Ⅱ、全冠和樁核冠牙本質(zhì)的等效應(yīng)力峰值位于遠中根根尖區(qū)頰側(cè),而高嵌體Ⅰ和高嵌體Ⅱ牙本質(zhì)的等效應(yīng)力峰值位于頰髓線角區(qū),不同形式修復后牙本質(zhì)的等效應(yīng)力峰值變化為:高嵌體Ⅱ高嵌體Ⅰ全冠樁核冠嵌體Ⅰ嵌體Ⅱ。六種修復形式牙本質(zhì)的最大主應(yīng)力峰值均位于遠中根根尖區(qū)頰側(cè),且峰值相差不大。(2)斜向載荷下,不同修復形式下牙釉質(zhì)的應(yīng)力峰值位置不同,其等效應(yīng)力峰值變化為:高嵌體Ⅰ嵌體Ⅰ嵌體Ⅱ高嵌體Ⅱ。而牙本質(zhì)的等效應(yīng)力峰值只有高嵌體Ⅱ位于髓室底部,其余五種修復形式的應(yīng)力峰值均位于近中根根尖區(qū)舌側(cè),且牙本質(zhì)的等效應(yīng)力峰值變化為:高嵌體Ⅱ高嵌體Ⅰ樁核冠全冠嵌體Ⅱ嵌體Ⅰ。嵌體Ⅰ、高嵌體Ⅰ和高嵌體Ⅱ修復后牙本質(zhì)的最大主應(yīng)力峰值位于頰髓線角區(qū),嵌體Ⅱ、全冠和樁核冠的最大主應(yīng)力峰值位于近中根根尖區(qū)舌側(cè),其應(yīng)力峰值變化為:高嵌體Ⅰ高嵌體Ⅱ嵌體Ⅰ嵌體Ⅱ樁核冠全冠。結(jié)論1.將cbct掃描技術(shù)和逆向工程軟件mimics、geomagic、造型軟件solidworks和有限元分析軟件ansysworkbench相結(jié)合,能夠快捷有效的建立三維有限元模型。所建立的正常下頜第一磨牙模型及頰(牙合)缺損根管治療后的不同修復形式的模型均具有良好的幾何相似性和力學相似性;2.無論從應(yīng)力峰值大小還是應(yīng)力分布情況來看,下頜第一磨牙頰(牙合)缺損根管治療后,以IPS e.max CAD瓷材料進行全冠及玻璃纖維樁核冠修復后,剩余牙體組織上的應(yīng)力在生物力學上較為合理;3.玻璃纖維樁沒有改變修復后牙齒的應(yīng)力分布及應(yīng)力峰值;4.在進行根管治療及窩洞預(yù)備時,要盡量保留髓室底部的牙體組織。
[Abstract]:Objective to establish a finite element model of mandibular first molar with different repair forms after the treatment of buccal (occlusal) defect root canal with three-dimensional finite element method. The stress peak and stress distribution of the mandibular first molar were observed and analyzed under vertical and oblique loads, and a relatively reasonable stress distribution was sought. The form of repair for the clinical medium and mandibular first molar buccal (occlusal) defect after the root canal treatment of the choice of repair form, provide biomechanical experimental theoretical data. Material and method 1. select a complete tooth, normal occlusion relationship, no periodontal disease, mandibular molar without obvious wear of young adult female volunteers, through CBCT scan obtained by scanning Taking the experimental image, the Mimics software reads the image and carries on the preliminary processing, the Geomagic software refinements, the modeling software Solidworks assembly modules and the finite element software Ansys Workbench division grid, the material assignment, the boundary setting, and establishes the three-dimensional finite element model of the normal mandibular first molar with the three-dimensional finite element model of the normal mandible first molar. On the basis of the shape repair of the crown and root canal to simulate the root canal treatment and tooth tissue defect, set material parameters, assemble each module and mesh to obtain the mandibular first molar buccal (occlusion) defect after root canal treatment model and IPS E.Max CAD porcelain material for inlay repair (inlay I) and internal reconstruction of resin. Posterior inlay repair (inlay II), high inlay repair (high inlay I) covering the cheek apex (high inlay I), high inlay repair (high inlay II) covering the entire denture surface. The three-dimensional finite element model.3. of the full crown restoration and the repair of the glass fiber resin post coronal is in the middle of the middle and distal crest of the occlusal surface, the central fossa, the proximal and middle buccal spires, and the 15 degrees of the long axis of the tooth. The force value of each loading point is 40N, and the oblique load of the center point of the buccal tip cheek and the tooth long axis is 60 degrees in the near distance. The force value of each loading point is 100N, and the stress situation under the normal and lateral bite of the teeth is simulated. The stress distribution of each model under the two loads is output, and the equivalent stress of the residual tooth tissue is observed and analyzed. Results 1. the three-dimensional finite element model of the normal mandibular first molar and the three dimensional finite element model of the first molar of the mandible, including ipse.maxcad inlay, high inlay, full crown and pile core crown, were established after the treatment of the normal mandibular first molar, and the three dimensional finite element model of the mandibular first molar, including dentin, gutta cusp and composite resin, was repaired. Inlay, high inlay, cover, full crown, glass fiber pile, adhesive layer, periodontal membrane and alveolar bone, the equivalent stress and maximum principal stress of the enamel in complete dentin are mainly concentrated in the loading area of the bite force, the peak is located in the distal cheek tip, and the stress of dentin mainly concentrates on the neck and the apex area, the peak is far away from the.2.. The equivalent stress and maximum principal stress of the enamel are mainly concentrated in the loading area of the bite force under the oblique load. The peak value of the dentin is mainly located in the distal and middle buccal tips. The stress of the dentin is mainly concentrated on the side of the tongue of the root. The peak value of the dentin is located at the different load of the posterior teeth of the posterior part of the root tip of the proximal root zone.3.. Force situation: (1) the equivalent stress and the maximum principal stress of the enamel are concentrated in the loading area of the bite force under the vertical load. The peak value of the equal effect force is: the inlay II inlay I high inlay I high inlay II. The inlay I, the inlay II, the peak value of the equivalent stress of the whole crown and the pile core dentin is located at the buccal side of the root tip of the distal root, while the high inlay I and high inlay The peak value of the equivalent stress of the dentin is located in the buccal cord angle area. The peak value of the equivalent stress of different forms of repairing posterior dentin is: high inlay II high inlay I full crown coronal inlay I inlay II. The peak value of the maximum principal stress of the six dentin is located on the cheek of the root tip of the distal root, and the difference of the peak value is not significant. (2) oblique load The peak stress peak position of dental enamel under different repair forms is different, and the peak value of its equal effect force is: high inlay I inlay I inlay II high inlay II. The peak value of the equivalent stress of dentin is only at the bottom of the medullary chamber, and the stress peaks of the other five kinds of repair forms are located in the lingual side of the proximal root apex region, and the dentin essence is the same. The peak value of effect force change is: high inlay II high inlay I pile coronal full crown inlay I inlay I. The maximum peak stress peak of high inlay I and high inlay II repair posterior dentin is located in the buccal pulp line angle region, inlay II, the maximum principal stress peak of the whole crown and pile core is located at the tongue side of the proximal root tip area, and the peak stress change is high inlay. Conclusion 1. the three-dimensional finite element model can be established quickly and effectively by combining CBCT scanning technology with mimics, Geomagic, Modeling Software Solidworks and finite element analysis software ansysworkbench, and the normal mandibular first molar model and buccal (occlusion) defect are established. The models of different repair forms after root canal therapy had good geometric similarity and mechanical similarity. 2. after the root canal treatment of the mandibular first molar buccal (occlusion) defect, the residual tooth tissue was repaired with IPS E.Max CAD porcelain material after the crown and glass fiber post coronal repair. The stress is more reasonable in biomechanics; 3. glass fiber pile does not change the stress distribution and stress peak of the repaired teeth. 4. in the root canal treatment and pit preparation, we should keep the dental tissue at the bottom of the pulp chamber as far as possible.
【學位授予單位】:鄭州大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:R781.05
【相似文獻】
相關(guān)期刊論文 前10條
1 郎首峰;左側(cè)下頜第一磨牙4根1例[J];牙體牙髓牙周病學雜志;2003年06期
2 李傳福,杜新,尹文新;雙側(cè)下頜第一磨牙多根1例[J];牙體牙髓牙周病學雜志;2004年06期
3 洪瑾,夏文薇,朱亞琴,王曉儀,熊煥國;有限元法建立下頜第一磨牙模型及受力分析[J];上海口腔醫(yī)學;2001年04期
4 武常亮;周延民;龔學慶;;單、雙種植體修復下頜第一磨牙載荷狀態(tài)下種植體周圍組織應(yīng)變及受力的實驗研究[J];現(xiàn)代口腔醫(yī)學雜志;2006年04期
5 郝嘉南;陳杰;彭東;楊潔;周鋒華;王學輝;;右下頜第一磨牙的雕刻方法[J];吉林醫(yī)藥學院學報;2009年01期
6 何世海;李蓓;;微創(chuàng)技術(shù)在拔除下頜第一磨牙中的應(yīng)用[J];河北醫(yī)學;2014年03期
7 陶嵐;徐曉;胡軍;;下頜第一磨牙Ⅱ類洞與隧道洞的有限元應(yīng)力比較[J];口腔醫(yī)學;2007年12期
8 孫德文;陳桂玲;;半切術(shù)修復下頜第一磨牙的臨床觀察[J];佛山科學技術(shù)學院學報(自然科學版);2008年05期
9 張亞慶;逄鍵梁;吳補領(lǐng);;顳下頜關(guān)節(jié)紊亂病與下頜第一磨牙齲因素的流行病學研究[J];實用口腔醫(yī)學雜志;2008年03期
10 陳鴻;陳禮權(quán);古松珊;;磨除中隔法拔除下頜第一磨牙的臨床觀察[J];臨床口腔醫(yī)學雜志;2011年02期
相關(guān)會議論文 前5條
1 喻剛;黃定明;周智;;中國人三牙根下頜第一磨牙發(fā)生率的臨床調(diào)查[A];全國第三次牙體牙髓病學臨床技術(shù)研討會論文匯編[C];2009年
2 張穎麗;柏祥娥;張影杰;;下頜第一磨牙缺損修復的計算機輔助設(shè)計[A];第九次全國口腔醫(yī)學計算機應(yīng)用學術(shù)會議論文匯編[C];2011年
3 喻剛;黃定明;鐘曉波;;中國人三牙根下頜第一磨牙發(fā)生率的臨床調(diào)查[A];全國第八次牙體牙髓病學學術(shù)會議論文匯編[C];2011年
4 巢永烈;楊永豐;杜傳詩;;下頜第一磨牙種植固定橋的受載分析[A];中華口腔醫(yī)學會成立大會暨第六次全國口腔醫(yī)學學術(shù)會議論文匯編[C];1996年
5 汪曉華;;從全科思維確定上下頜第一磨牙缺失的治療方法[A];中華口腔醫(yī)學會全科口腔醫(yī)學專業(yè)委員會第一次學術(shù)年會會議論文集[C];2009年
相關(guān)碩士學位論文 前10條
1 楊荃荃;下頜第一磨牙缺失頜骨解剖結(jié)構(gòu)的CBCT測量分析[D];瀘州醫(yī)學院;2014年
2 王書明;人下頜第一磨牙牙冠—牙周膜三維精細形態(tài)的初步研究[D];第四軍醫(yī)大學;2015年
3 范茜茜;單側(cè)下頜第一磨牙缺失對咀嚼肌肌電的影響[D];安徽醫(yī)科大學;2016年
4 李歡歡;下頜第一磨牙頰(牙合)缺損不同修復形式的三維有限元分析[D];鄭州大學;2016年
5 張江山;下頜第一磨牙樁道制備的三維空間研究[D];浙江大學;2012年
6 孫俊鵬;成人下頜第一磨牙缺失矯治前后面部高度的臨床研究[D];山東大學;2008年
7 劉濤;下頜第一磨牙三維有限元應(yīng)力分析[D];山東大學;2015年
8 陶江豐;下頜第一磨牙種植修復設(shè)計的生物力學研究[D];南京醫(yī)科大學;2006年
9 于美芝;利用CBCT研究下頜第一磨牙根管變異的對稱性[D];青島大學;2015年
10 林娉婷;運用樹脂壓低過萌上頜后牙的咬合及肌電變化[D];南京大學;2014年
,本文編號:2007969
本文鏈接:http://sikaile.net/yixuelunwen/kouq/2007969.html