天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 醫(yī)學(xué)論文 > 口腔論文 >

3D打印激光快速成型種植體的制備及其機(jī)械性能分析

發(fā)布時(shí)間:2018-05-10 18:22

  本文選題:3D打印 + 激光快速成型。 參考:《吉林大學(xué)》2017年碩士論文


【摘要】:研究背景:牙列缺損或牙列缺失嚴(yán)重影響人民群眾身體健康,隨著人口老齡化的加速,目前我國(guó)無(wú)牙頜患者已達(dá)1500萬(wàn),牙列缺損患者已超3億人。提供舒適安全,恢復(fù)咀嚼效率高的義齒修復(fù)方式,是迫在眉睫的課題。隨著社會(huì)經(jīng)濟(jì)的發(fā)展和科學(xué)技術(shù)的進(jìn)步,人們對(duì)生活質(zhì)量要求不斷提高,種植義齒修復(fù)成為口腔修復(fù)的首選。與傳統(tǒng)義齒修復(fù)方式相比,它具有不破壞口腔余留牙、美觀舒適、恢復(fù)咀嚼效率高的優(yōu)點(diǎn),但仍存在許多不足。目前臨床應(yīng)用的牙種植體多為進(jìn)口,價(jià)格昂貴,加工方式均為精密鑄造加工,形態(tài)尺寸規(guī)格劃一,無(wú)法滿足個(gè)性化及特殊患者需求,鑄造精度及骨整合效率有待進(jìn)一步提高,且當(dāng)前的種植義齒修復(fù)多為二次植入,需要患者拔牙后三至六個(gè)月行二次手術(shù),不僅在等待拔牙創(chuàng)愈合過(guò)程中喪失了寶貴的骨量,而且延長(zhǎng)療程,增加了患者痛苦。因此如何實(shí)現(xiàn)個(gè)性化即刻種植是種植義齒修復(fù)的發(fā)展方向。3D打印技術(shù)的出現(xiàn)為實(shí)現(xiàn)個(gè)性化即刻種植提供了可能。它是伴隨計(jì)算機(jī)科學(xué)、精密加工技術(shù)的進(jìn)步而出現(xiàn)的快速增材技術(shù),具有精密、快速、個(gè)性化、定制化的特點(diǎn),被認(rèn)為是推動(dòng)第三次工業(yè)革命的核心技術(shù),一經(jīng)出現(xiàn)即成為生物醫(yī)學(xué)、航空航天、材料學(xué)等眾多領(lǐng)域的研究熱點(diǎn)。研究目的:應(yīng)用3D打印激光快速成型技術(shù)制備出鈦合金牙種植體并探討其機(jī)械性能,為利用3D打印快速成型技術(shù)制備個(gè)性化牙種植體提供依據(jù)。研究方法:在計(jì)算機(jī)上利用CATIA三維模型設(shè)計(jì)軟件建立牙種植體模型及其X射線衍射實(shí)驗(yàn)試件、X射線能譜分析實(shí)驗(yàn)試件、顯微硬度實(shí)驗(yàn)試件、金相顯微鏡下觀察實(shí)驗(yàn)試件的模型,并按照國(guó)家標(biāo)準(zhǔn)設(shè)計(jì)出拉伸試件模型,應(yīng)用3D打印激光快速成型技術(shù)和TC4鈦合金粉末,設(shè)定好打印參數(shù),制備出直徑為4.1mm×13mm的圓柱型鈦合金種植體,10.0mm×10.0mm×1.0mm的X射線衍射實(shí)驗(yàn)試件、X射線能譜分析實(shí)驗(yàn)試件、顯微硬度實(shí)驗(yàn)試件和顯微硬度觀察試件,及原標(biāo)距長(zhǎng)度55m m,平行長(zhǎng)度75mm,寬10mm,厚2mm的拉伸實(shí)驗(yàn)試件。通過(guò)X射線衍射(XRD)實(shí)驗(yàn)分析3D打印鈦合金種植牙的材料相組成,通過(guò)能量色散X射線光譜(EDS)實(shí)驗(yàn)定量分析3D打印鈦合金種植牙的材料化學(xué)組成并與原粉體相比較與分析,在金相顯微鏡下觀察3D打印鈦合金種植體的組織形貌并將退火前和退火后的組織形貌進(jìn)行比較,利用顯微硬度測(cè)試儀測(cè)試其硬度范圍,利用微機(jī)控制電子式萬(wàn)能試驗(yàn)機(jī)檢測(cè)材料的機(jī)械性能并與國(guó)家金屬材料拉伸性能標(biāo)準(zhǔn)比較,然后在掃描電鏡下觀察拉伸斷面的形貌。研究結(jié)果3D打印TC4鈦合金實(shí)驗(yàn)試件的XRD實(shí)驗(yàn)結(jié)果可見XRD曲線中只有第一個(gè)峰為β相組成,而且峰較小,其余峰均為α相組成;EDS實(shí)驗(yàn)結(jié)果顯示3D打印鈦合金試件中元素含量(質(zhì)量分?jǐn)?shù))分別為90.74%Ti、5.59%Al、和3.67%V,與原粉體成分基本一致;3D打印激光快速成型鈦合金材料試件金相顯微鏡下觀察到退火前和退火后3D打印鈦合金均為典型的網(wǎng)籃狀結(jié)構(gòu),退火后的顯微結(jié)構(gòu)則比退火前更加均勻;顯微硬度試驗(yàn)結(jié)果顯示3D打印鈦合金材料試件的維氏硬度范圍是372.93~428.46HV。拉伸試驗(yàn)結(jié)果顯示3D打印鈦合金材料標(biāo)準(zhǔn)試件的拉伸強(qiáng)度為(1821.7±146.1)MPa,屈服強(qiáng)度為(1355.9±109.6)MPa,延伸率為(31.3±1.7)%,其機(jī)械性能符合國(guó)家種植牙材料醫(yī)用標(biāo)準(zhǔn);掃描電鏡下觀察3D打印鈦合金材料試件斷面形貌,可見試件斷面密布了大小不一的韌窩,為典型的韌性斷裂。結(jié)論:利用3D打印快速成型技術(shù)和TC4鈦合金粉末制備出的材料具有良好的機(jī)械性能,能夠滿足醫(yī)學(xué)牙種植體的材料要求?朔鞣N細(xì)節(jié)問(wèn)題后,該技術(shù)有望在牙種植體的制備和個(gè)性化即刻種植領(lǐng)域廣泛應(yīng)用。
[Abstract]:Background: dentition defect or dentition deletion seriously affects the health of the people. With the accelerated aging of the population, there are 15 million odonless patients in China and 300 million patients with dentition defects. It is an urgent task to provide comfortable and safe and chewable denture restoration. With the development of social economy and economic development, With the progress of science and technology, people have improved the quality of life, and the implant prosthesis has become the first choice in oral repair. Compared with the traditional denture repair method, it has the advantages of not destroying the mouth remaining teeth, beautiful and comfortable, and restoring the chewing efficiency, but there are still many imfeet. At present, the dental implants are mostly imported and priced at present. Expensive, processing methods are precision casting processing, shape and size specification is one, can not meet the needs of personalized and special patients, casting precision and bone integration efficiency needs to be further improved, and the current implant denture is two implantation, three to six months after the extraction of dental extraction, two operations, not only waiting for tooth extraction wound healing It has lost precious bone mass, extended the course of treatment, and increased the sufferings. Therefore, how to realize individualized immediate planting is the development direction of denture restoration, the emergence of.3D printing technology provides the possibility to realize individualized immediate planting. It is a rapid increasing technique with the progress of computer science and fine processing technology. Operation, with the characteristics of precision, speed, individuation and customization, is considered as the core technology to promote the third industrial revolution. Once it appears, it becomes a hot spot in many fields, such as biomedicine, aeronautics and Astronautics, materials science and so on. The purpose of this study is to prepare titanium alloy dental implants by 3D printing laser rapid forming technology and explore its mechanical properties. It provides a basis for the preparation of individual dental implants by using 3D printing rapid prototyping technology. On the computer, CATIA 3D model design software is used to establish dental implants model and X ray diffraction test specimen, X ray energy spectrum analysis test specimen, microhardness test specimen, and metallographic microscope to observe the model of experimental specimen The tensile specimen model was designed according to the national standard. The laser rapid prototyping technology and TC4 titanium alloy powder were printed by 3D, and the printing parameters were set. The cylindrical titanium alloy implants with a diameter of 4.1mm x 13mm were prepared, the X ray diffraction experimental specimens of 10.0mm * 10.0mm x 1.0mm, the X ray energy spectrum analysis test specimen, and the microhardness test test were tested. The specimen and the microhardness test specimen, the tensile experimental specimen with the length of 55m m, the parallel length 75mm, the wide 10mm, and the thick 2mm are tested by the X ray diffraction (XRD) experiment to analyze the material phase composition of the implanted teeth of the 3D printing titanium alloy. The chemical composition of the material of the 3D printing titanium alloy implant teeth is quantitatively analyzed by the energy dispersive X ray spectroscopy (EDS) and the raw materials are analyzed by the energy dispersive X ray spectroscopy (EDS). The microstructure of 3D titanium alloy implants was observed under metallographic microscope and compared with the microstructure before and after annealing. The hardness range was measured by the microhardness tester, and the mechanical properties of the material were detected by the microcomputer controlled electronic universal testing machine and the tensile property of the metal material. It can be compared, and then the morphology of the tensile section is observed under the scanning electron microscope. The results of XRD experiment of 3D print TC4 titanium alloy experimental specimen show that only the first peak in the XRD curve is composed of beta phase, and the peak is small, and the other peaks are all alpha phase composition; the result of EDS experiment shows the element content (mass fraction) in the 3D printing titanium alloy specimen. 90.74%Ti, 5.59%Al, and 3.67%V are basically the same as the original powder, and the 3D printing laser rapid prototyping titanium alloy specimens are observed under the metallographic microscope that the 3D printing titanium alloy is a typical net basket structure before and after the annealing, and the microstructure after annealing is more uniform than that before the annealing; the microhardness test results show 3D beating. The Vivtorinox hardness range of the test piece of imprinted titanium alloy material is 372.93~428.46HV. tensile test results show that the tensile strength of the standard specimen of 3D printing titanium alloy material is (1821.7 + 146.1) MPa, the yield strength is (1355.9 + 109.6) MPa, and the elongation is (31.3 + 1.7)%. The mechanical properties conform to the medical standard of the national dental implant material; the scanning electron microscope is used to observe the 3D The cross section of the specimen of titanium alloy material is printed, and the fracture surface of the specimen is shown to be a typical ductile fracture. Conclusion: the materials prepared by 3D printing rapid prototyping and TC4 titanium alloy powder have good mechanical properties, and can meet the material requirements of medical dental implants. The technology is expected to be widely applied in the field of dental implants preparation and personalized instant planting.

【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R783.6

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 董智偉;張新鳳;陳春艷;曹志強(qiáng);柳云恩;侯明曉;張力;;3D打印導(dǎo)板技術(shù)在單側(cè)顴骨骨折治療中的應(yīng)用[J];解放軍醫(yī)藥雜志;2016年11期

2 王洪一;梁久龍;劉曉燕;張庭輝;邱濤;付志強(qiáng);何景濤;曹志強(qiáng);柳云恩;陶凱;侯明曉;;3D打印技術(shù)在正頜外科手術(shù)中的應(yīng)用[J];解放軍醫(yī)藥雜志;2015年11期

3 湯雨龍;惠瑞宗;曹志強(qiáng);柳云恩;張曉東;侯明曉;;3D打印技術(shù)在口腔種植導(dǎo)板制作中的應(yīng)用[J];解放軍醫(yī)藥雜志;2015年11期

4 張?jiān)撇?喬雯鈺;張?chǎng)析?馬芳;翟蓮娜;顧哲明;;3D打印用高分子材料的研究與應(yīng)用進(jìn)展[J];上海塑料;2015年01期

5 沈聰聰;張艷;李青峰;朱明;侯亦康;曲淼;許yP榮;柴崗;;3-D打印技術(shù)制備人工骨修復(fù)下頜角截骨整形術(shù)后骨缺損[J];中國(guó)修復(fù)重建外科雜志;2014年03期

6 石靜;鐘玉敏;;組織工程中3D生物打印技術(shù)的應(yīng)用[J];中國(guó)組織工程研究;2014年02期

7 楊永強(qiáng);劉洋;宋長(zhǎng)輝;;金屬零件3D打印技術(shù)現(xiàn)狀及研究進(jìn)展[J];機(jī)電工程技術(shù);2013年04期

8 ;解密3D打印[J];工業(yè)設(shè)計(jì);2013年02期

9 羅剛銀;唐玉國(guó);喬培玉;王弼陡;賈贊東;徐重;;結(jié)構(gòu)光數(shù)字柵線法對(duì)物體三維形貌的高精度測(cè)量[J];光譜學(xué)與光譜分析;2012年09期

10 鄭衛(wèi)國(guó),顏永年,周赫赫,劉振寧;快速成形技術(shù)在臨床外科手術(shù)中的潛在應(yīng)用[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年08期

相關(guān)碩士學(xué)位論文 前2條

1 楊中;基于羥基磷灰石的3D打印和燒結(jié)強(qiáng)化人工骨技術(shù)研究[D];重慶大學(xué);2015年

2 張鈺;聚醚醚酮仿生人工骨3D打印熱力學(xué)仿真及實(shí)驗(yàn)研究[D];吉林大學(xué);2014年

,

本文編號(hào):1870378

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/kouq/1870378.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶889a3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com