基于牙周膜超彈性本構(gòu)模型微種植支抗滑動(dòng)法內(nèi)收上頜前牙的三維有限元分析
發(fā)布時(shí)間:2018-04-29 16:43
本文選題:牙周膜超彈性本構(gòu)模型 + 微種植支抗; 參考:《青島大學(xué)》2017年碩士論文
【摘要】:目的探索構(gòu)建牙周膜超彈性本構(gòu)模型的方法,建立更精確的、更高仿真度的包含有上頜牙列、牙槽骨、牙周膜、微種植體支抗、牽引鉤、弓絲、托槽在內(nèi)的三維有限元模型,分別模擬直絲弓矯治技術(shù)滑動(dòng)機(jī)制條件下一步法和兩步法內(nèi)收上頜前牙,調(diào)整微種植體植入高度和矢狀向位置,觀察上頜前牙的初始位移趨勢(shì),為臨床提供生物力學(xué)參考。方法從青島市口腔醫(yī)院CBCT數(shù)據(jù)庫(kù)中選取一例上頜前突患者的CBCT作為素材,依次應(yīng)用軟件Mimics Medical 17.0建立上頜牙列、牙槽骨的三維模型;應(yīng)用軟件Geomagic Studio 2013對(duì)已建立的上頜牙列、牙槽骨的三維模型進(jìn)行曲面處理;通過軟件Unigraphics NX 10對(duì)已建立的上頜牙列的牙根部分的三維模型進(jìn)行抽殼0.2mm,建立牙周膜的三維模型;應(yīng)用軟件Solid Works依次構(gòu)建簡(jiǎn)化牽引鉤、上頜弓絲、簡(jiǎn)化托槽、簡(jiǎn)化種植釘?shù)娜S模型;最后通過軟件Solid Works分別組裝種植體支抗的矢狀向位置分別位于第二前磨牙與第一磨牙之間、第一磨牙與第二磨牙之間及高度分別距牙槽嵴頂上4mm、6mm、8mm不同組合時(shí)的包含有上頜牙列、牙槽骨、牙周膜、托槽、上頜弓絲、牽引鉤、種植體在內(nèi)的三維模型共計(jì)12個(gè),模擬滑動(dòng)機(jī)制條件下一步法和兩步法內(nèi)收上頜前牙;采用文獻(xiàn)中對(duì)2名女性成年志愿者體內(nèi)牙周膜拉伸試驗(yàn)獲得的數(shù)據(jù)在ANSYS Workbench中生成應(yīng)力-應(yīng)力值曲線,獲取牙周膜在加載不同應(yīng)力狀態(tài)下楊氏模量變化的關(guān)系曲線,從而得到牙周膜的楊氏模量參數(shù);運(yùn)用ANSYS14.0軟件對(duì)上述模型進(jìn)行有限元分析,分析上頜前牙的初始位移情況,獲取牙齒的三維初始位移云圖,分別以牙冠切緣中點(diǎn)和根尖點(diǎn)作為參考點(diǎn)讀取牙齒的三維初始位移值。牙齒初始位移分為三個(gè)方向,以X軸代表牙齒的水平方向運(yùn)動(dòng)趨勢(shì)(向右為正),以Y軸代表矢狀向運(yùn)動(dòng)趨勢(shì)(向后為正),以Z軸代表垂直向運(yùn)動(dòng)趨勢(shì)(向上為正),并進(jìn)行比較。結(jié)果1、同一種方法內(nèi)收上頜前牙時(shí),種植體矢狀向位置不變,高度增加時(shí),各前牙牙冠初始內(nèi)收量減小,各前牙的初始?jí)喝肓吭龃?2、同一種方法內(nèi)收上頜前牙時(shí),種植體高度不變,種植體矢狀向位置后移時(shí),各前牙牙冠初始內(nèi)收量增加,各前牙的壓入量減小。3、種植體矢狀向位置和高度均不變時(shí),兩步法內(nèi)收上前牙較一步法內(nèi)收上前牙,中切牙、側(cè)切牙初始內(nèi)收量更大,初始?jí)喝肓扛。結(jié)論1、構(gòu)建基于牙周膜超彈性本構(gòu)模型的三維有限元模型的方法具有可行性;2、種植體矢狀向位置的改變主要影響牙齒的內(nèi)收位移方式,高度的變化主要影響牙齒的垂直向位移方式;3、一步法與兩步法內(nèi)收上頜前牙時(shí),兩步法可以獲得更大的牙齒初始位移量。
[Abstract]:Objective to explore the method of constructing a hyperelastic constitutive model of periodontal ligament, and to establish a more accurate and high fidelity 3D finite element model including maxillary dentition, alveolar bone, periodontal ligament, microimplant Anchorage, traction hook, arch wire and bracket. The maxillary anterior teeth were retracted by one-step method and two-step method respectively under the sliding mechanism of straight wire appliance. The height and sagittal position of microimplants were adjusted to observe the initial displacement trend of maxillary anterior teeth and to provide biomechanical reference for clinical application. Methods the CBCT of a patient with maxillary protrusion was selected from the CBCT database of Qingdao Stomatology Hospital. The 3D model of maxillary dentition and alveolar bone was established by software Mimics Medical 17.0, and the established maxillary dentition was established by Geomagic Studio 2013. The 3D model of alveolar bone was curved, the 3D model of root part of maxillary dentition was extracted by software Unigraphics NX10, and the three-dimensional model of periodontal ligament was built by software Unigraphics NX10. Finally, the sagittal position of implant Anchorage was assembled by software Solid Works, and the sagittal position of implant Anchorage was located between the second premolar and the first molar, respectively. The three dimensional models including maxillary dentition, alveolar bone, periodontal membrane, bracket, maxillary arch wire, traction hook and implant were included in different combinations of the first molar and the second molar, and the height of the first molar and the second molar were respectively 4 mm to 6 mm or 8 mm above the top of the alveolar crest, including the maxillary dentition, alveolar bone, periodontal membrane, bracket, maxillary arch wire, traction hook and implant. Under the condition of simulated sliding mechanism, the maxillary anterior teeth were retracted by one-step and two-step methods. The stress-stress curves were generated in ANSYS Workbench by using the data obtained from the periodontal ligament tensile test in two female adult volunteers. The relation curves of the Young's modulus changes of periodontal ligament under different stress state were obtained, and the Young's modulus parameters of periodontal ligament were obtained, and the initial displacement of maxillary anterior teeth was analyzed by finite element analysis with ANSYS14.0 software. Three dimensional initial displacement cloud images of teeth were obtained, and the three dimensional initial displacement values of teeth were obtained by using the midpoint and the root tip point of the crown cutting edge as reference points, respectively. The initial displacement of teeth can be divided into three directions. The X axis represents the horizontal movement trend of the teeth (right is positive), Y axis represents sagittal movement (backward is positive), Z represents vertical movement (upward is positive), and the comparison is made. Results 1. When the maxillary anterior teeth were closed in the same method, the sagittal position of the implants was unchanged, and the initial adductive volume of the crowns decreased and the initial indentation of the anterior teeth increased with the increase of the height, and when the maxillary anterior teeth were retracted in the same method, When the implant height was constant and the sagittal position of the implant moved backward, the initial adduction amount of each anterior tooth crown increased, and the indentation volume of each anterior tooth decreased by .3.When the sagittal position and height of the implant were not changed, the two-step anterior tooth was retracted from the anterior teeth in one step method. In the central incisor, the initial adductive volume and the initial indentation volume of the lateral incisor are larger. Conclusion 1. It is feasible to construct a three-dimensional finite element model based on periodontal hyperelastic constitutive model. The change of sagittal position of implant mainly affects the way of tooth adductive displacement. The change of height mainly affects the vertical displacement of teeth. When the maxillary anterior teeth are retracted by one-step method and two-step method, the initial displacement of teeth can be obtained by two-step method.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R783.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓耀輝;牟蘭;徐庚池;楊藝強(qiáng);葛振林;;正畸滑動(dòng)關(guān)閉牙間隙兩種方法的三維有限元分析[J];中華口腔醫(yī)學(xué)雜志;2015年03期
2 呂晶晶;米叢波;;牙周膜的生物力學(xué)性能[J];國(guó)際口腔醫(yī)學(xué)雜志;2014年03期
3 董晶;張哲湛;周國(guó)良;;Ⅱ類骨質(zhì)中正畸微種植體錐度及植入角度對(duì)支抗穩(wěn)定性影響的三維有限元分析[J];華西口腔醫(yī)學(xué)雜志;2014年01期
4 劉旺玉;陳雪林;蔡斌;項(xiàng)露賽;吳華鋒;何旭順;;動(dòng)態(tài)咬合下牙周膜的生物力學(xué)分析[J];醫(yī)用生物力學(xué);2013年05期
5 吳佩蓉;朱憲春;閆森;張嫻;史學(xué)明;;上頜種植釘配合搖椅曲內(nèi)收上前牙的位移趨勢(shì)的三維有限元分析[J];華西口腔醫(yī)學(xué)雜志;2012年06期
6 胡露露;宋錦t,
本文編號(hào):1820743
本文鏈接:http://sikaile.net/yixuelunwen/kouq/1820743.html
最近更新
教材專著