半監(jiān)督SVM在阿爾茨海默癥數(shù)據(jù)分析中的應(yīng)用
[Abstract]:Alzheimer's disease (AD) is a chronic disease characterized by cognitive impairment. With the development of biomedicine, there are more and more data on Alzheimer's disease, but these data sets have the characteristics of high dimension, various forms and uneven distribution. How to make effective use of these complex data has become a hot issue in big data's time. Support vector machine (SVM) is a new tool for data mining based on statistical learning theory. However, the method can not recognize fuzzy labeled samples, nor can it use unlabeled samples, which leads to the deviation of model classification results. In order to deal effectively with complex data in Alzheimer's disease and not to waste a large number of valuable unlabeled samples, an improved support vector machine (SVM) algorithm is introduced. The fuzzy support vector machine (FSVM) and semi-supervised support vector machine (S3VM) are applied to the classification of Alzheimer's disease data. The accuracy of the classification results is observed by experiments. The main contents and results are as follows: (1) at first, the feature extraction method is used to process the data. In order to reduce the dimension of the data, 11 factor variables were extracted from 55 characteristic variables of 121 Alzheimer's data using principal component analysis. And these factor variables can basically represent all the information of the data. (2) the theoretical framework of support vector machine (SVM) is studied. For the kernel function and parameter problem in the SVM model, the classification experiments are carried out by setting different values. The degree of influence on classification accuracy was observed. The experimental results show that the SVM algorithm can effectively analyze Alzheimer's disease data, and the classification accuracy of test samples can reach 92.157. (3) the theoretical framework of fuzzy support vector machine (FSVM) is studied. The first three principal components and the first two principal components of 11 characteristic variables of Alzheimer's data set were selected for model training. Because the fuzzy factors in the FSVM algorithm can identify some special sample points, it is possible to distinguish the sample points with large amount of information from the useless noise points by giving different samples different membership values. A fuzzy C-means clustering method based on FSVM was used to classify 121 samples from Alzheimer's disease data set, and a more accurate classification result was obtained. The accuracy of negative class prediction is 95.455, but the accuracy of positive class is slightly lower. (4) the theoretical algorithm of semi-supervised support vector machine is studied, and the influence of various functions and parameters in the model on the classification results is analyzed. And find out the best learning model according to the parameter optimization. The experimental results show that the classification accuracy is 94.118% and the results are stable, which indicates that the S3VM method can improve the classification accuracy of the model by synthesizing the distribution information of labeled and unlabeled samples. Through theoretical research and experimental verification, we can see that the third model of support vector machine studied in this paper is semi-supervised support vector machine, compared with the other two models. It has higher and more stable classification accuracy in the analysis of Alzheimer's disease data. The results show that this method can effectively predict whether the elderly have Alzheimer's disease by classifying the brain function data, so as to better assist doctors in the diagnosis and treatment of AD.
【學(xué)位授予單位】:南陽師范學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:R749.16
【相似文獻】
相關(guān)期刊論文 前10條
1 Dena Shenk;林敏霞;;阿爾茨海默癥患者認同維持的敘事研究[J];廣西民族大學(xué)學(xué)報(哲學(xué)社會科學(xué)版);2008年01期
2 于曉剛;徐凌忠;;阿爾茨海默癥研究進展[J];社區(qū)醫(yī)學(xué)雜志;2009年15期
3 ;科研人員發(fā)現(xiàn)3個與阿爾茨海默癥有關(guān)的基因[J];中國當代醫(yī)藥;2009年19期
4 張玉勤;;通過嗅覺試驗?zāi)芊裨缙谠\斷阿爾茨海默癥[J];國外醫(yī)學(xué)情報;1993年19期
5 張玉勤;;阿爾茨海默癥的新診斷方法[J];國外醫(yī)學(xué)情報;1995年06期
6 ;美曲膦酯治療阿爾茨海默癥的認知缺陷[J];國外醫(yī)藥(合成藥 生化藥 制劑分冊);1999年03期
7 船舷;;鋁過量是阿爾茨海默癥的重要誘因[J];長壽;2014年01期
8 林曉文;從里根去世看“阿爾茨海默癥”[J];家庭中醫(yī)藥;2005年11期
9 戎輝;;阿爾茨海默癥青睞哪些人[J];金秋;2012年24期
10 卓然;;預(yù)防阿爾茨海默癥有良方[J];長壽;2013年04期
相關(guān)會議論文 前10條
1 劉玲玲;龔鍇;盛柏楊;閆玉芳;鄭輝;張秀芳;趙南明;公衍道;;不同年齡和基因型阿爾茨海默癥小鼠海馬新生神經(jīng)元數(shù)量的差異[A];第十一次中國生物物理學(xué)術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
2 熊曉云;鄒永;吳玉梅;朱杰;梅其炳;;三種阿爾茨海默癥治療藥物促體外培養(yǎng)小鼠皮層神經(jīng)元活性的比較[A];中國藥理學(xué)會第八次全國代表大會論文摘要集(第二部分)[C];2002年
3 段迪;凌迎春;周月琴;;血管性癡呆及阿爾茨海默癥患者血清甘油三酯和總膽固醇變化的臨床研究[A];2009年浙江省醫(yī)學(xué)會精神病學(xué)分會老年精神障礙學(xué)組學(xué)術(shù)會議論文匯編[C];2009年
4 韓鐵鋼;張競;韓軼星;茹炳根;;應(yīng)用比較蛋白質(zhì)組學(xué)研究神經(jīng)生長抑制因子與阿爾茨海默癥的關(guān)系[A];中國蛋白質(zhì)組學(xué)第三屆學(xué)術(shù)大會論文摘要[C];2005年
5 段迪;凌迎春;周月琴;;血管性癡呆及阿爾茨海默癥患者血清甘油三酯和總膽固醇變化的臨床研究[A];2007年浙江省精神病學(xué)學(xué)術(shù)年會論文匯編[C];2007年
6 謝盈瑞;;阿爾茨海默癥所引發(fā)的抑郁癥及護理[A];2007河南省精神衛(wèi)生學(xué)術(shù)研討會資料匯編[C];2007年
7 朱靜靜;竇非;;熱休克蛋白90抑制劑降低阿爾茨海默癥β淀粉樣肽的作用機制初步研究[A];中國遺傳學(xué)會“發(fā)育、遺傳和疾病”研討會論文匯編集[C];2007年
8 熊曉云;鄒永;吳玉梅;朱杰;梅其炳;;三種阿爾茨海默癥治療藥物促體外培養(yǎng)小鼠皮層神經(jīng)元活性的比較[A];中國藥理學(xué)會第八次全國代表大會暨全國藥理學(xué)術(shù)會議論文摘要匯編[C];2002年
9 賈衛(wèi)平;焦勇;楊頻;;金屬離子與Aβ肽競爭取代理作用的論研究[A];第五屆全國化學(xué)生物學(xué)學(xué)術(shù)會議論文摘要集[C];2007年
10 焦勇;賈衛(wèi)平;韓大雄;楊頻;;分子模擬研究銅離子對Aβ肽聚集行為的調(diào)控機理[A];第五屆全國化學(xué)生物學(xué)學(xué)術(shù)會議論文摘要集[C];2007年
相關(guān)重要報紙文章 前10條
1 本報記者 賈巖;阿爾茨海默癥藥研盯上創(chuàng)新中藥[N];醫(yī)藥經(jīng)濟報;2013年
2 記者 李穎;中國需改進阿爾茨海默癥診斷照護體系[N];科技日報;2014年
3 劉海英;瑞典發(fā)現(xiàn)阿爾茨海默癥生物新標志[N];科技日報;2009年
4 重慶萬州 王祖遠;多吃魚蔬少吃紅肉可預(yù)防阿爾茨海默癥[N];上海中醫(yī)藥報;2012年
5 記者 鄧暉;施一公研究組揭示阿爾茨海默癥致病蛋白結(jié)構(gòu)[N];光明日報;2014年
6 趙婀娜 章正;阿爾茨海默癥研究獲突破[N];人民日報;2014年
7 ;阿爾茨海默癥:防勝于治[N];文匯報;2011年
8 本報記者 王瀟;被擦去的記憶[N];解放日報;2013年
9 ;學(xué)外語有助延緩智衰[N];新華每日電訊;2011年
10 ;新型醫(yī)用染料可用于阿爾茨海默癥診斷[N];中國紡織報;2005年
相關(guān)博士學(xué)位論文 前4條
1 朱e,
本文編號:2208088
本文鏈接:http://sikaile.net/yixuelunwen/jsb/2208088.html