嚴(yán)重意識(shí)障礙患者對(duì)聲刺激的EEG響應(yīng)及其在有效性評(píng)估中的應(yīng)用
本文選題:嚴(yán)重意識(shí)障礙 + EEG。 參考:《杭州電子科技大學(xué)》2013年碩士論文
【摘要】:嚴(yán)重意識(shí)障礙患者是指由重型顱腦損傷、腦出血或梗死、電擊傷、心臟疾病、溺水等所導(dǎo)致的對(duì)周圍環(huán)境的感知具有障礙的患者(俗稱植物人)。嚴(yán)重意識(shí)障礙患者意識(shí)狀態(tài)分為植物狀態(tài)(VS, vegetative state)和最小意識(shí)狀態(tài)(MCS, minimally conscious state)。如何通過不同的刺激手段(如電刺激,聲刺激,光刺激等)對(duì)意識(shí)障礙患者進(jìn)行有效促醒是醫(yī)學(xué)界面臨的難題之一。聲刺激(包括喚名刺激、音樂刺激)是目前臨床常用的促醒治療方法,然而如何對(duì)不同聲刺激的有效性如何進(jìn)行評(píng)估,目前還缺乏明確的評(píng)估方法,因此探索聲刺激有效性評(píng)估方法具有重要的臨床應(yīng)用價(jià)值。 腦電信號(hào)(EEG)具有時(shí)間分辨率高,成本低,無(wú)輻射性,,適合床邊檢測(cè)等優(yōu)點(diǎn),能夠準(zhǔn)確、客觀的地反映出大腦功能活動(dòng)的變化情況。本文以腦電技術(shù)作為研究手段,通過對(duì)比分析被試在不同類型聲音(喚名、音樂)刺激下的EEG信號(hào)特征值的變化,判別何種刺激引發(fā)對(duì)患者最大腦電響應(yīng),以此作為刺激有效性評(píng)定依據(jù);同時(shí),根據(jù)不同意識(shí)狀態(tài)的患者對(duì)同一聲音刺激的不同反應(yīng)程度,實(shí)現(xiàn)意識(shí)狀態(tài)的輔助判定。本論文的主要研究工作如下: (1)背景及現(xiàn)狀的介紹:介紹在嚴(yán)重意識(shí)障礙患者診治領(lǐng)域面臨的醫(yī)學(xué)問題及腦電技術(shù)在意識(shí)狀態(tài)判定和預(yù)后方面的研究概況和發(fā)展趨勢(shì)。 (2)實(shí)驗(yàn)方案設(shè)計(jì):包括實(shí)驗(yàn)對(duì)象的選擇、實(shí)驗(yàn)范式的確定、實(shí)驗(yàn)材料的應(yīng)用等。 (3)聲刺激有效性的評(píng)估:本文分別選擇了小波能量值和樣本熵作為腦電特征指標(biāo),統(tǒng)計(jì)分析MCS和VS在喚自名刺激、喚他名刺激和音樂刺激下三種不同聲音刺激前后的腦電響應(yīng)程度,比較不同聲刺激手段的有效性。研究表明:首先,在喚自名刺激前后,MCS和VS的腦電小波能量值均具有顯著性的變化,而樣本熵均無(wú)顯著性的變化。其次,在喚他名刺激前后,MCS和VS的小波能量值、樣本熵均無(wú)顯著性變化。最后,在音樂刺激前后,MCS的小波能量值有顯著性變化,樣本熵?zé)o顯著性變化;而VS的小波能量值、樣本熵均無(wú)顯著性變化。因此,腦電小波能量值能夠有效地實(shí)現(xiàn)對(duì)不同聲刺激的有效性評(píng)估,而樣本熵不適于評(píng)估聲刺激的有效性。 (4)意識(shí)狀態(tài)的分類研究:本文以喚自名刺激和音樂刺激下的8導(dǎo)小波能量值為特征參數(shù),應(yīng)用K-調(diào)和均值聚類方法,對(duì)33例意識(shí)障礙患者進(jìn)行了意識(shí)狀態(tài)判別,其判別正確率達(dá)78%。
[Abstract]:Severe consciousness disorder refers to the patients with severe brain injury, cerebral hemorrhage or infarction, electric shock injury, heart disease, drowning and so on, who have difficulty in perceiving the surrounding environment (commonly known as vegetative). The state of consciousness of patients with severe disturbance of consciousness is divided into vegetative state (VS, vegetative state) and minimal state of consciousness (MCS, minimally conscious state). How to effectively awaken the patients with consciousness disorders through different stimuli (such as electrical stimulation, acoustic stimulation, optical stimulation, etc.) is one of the difficult problems in the medical field. Acoustic stimulation (including name-calling stimulation, musical stimulation) is a commonly used method of wake-up therapy. However, how to evaluate the effectiveness of different acoustic stimuli, there is still a lack of clear evaluation methods. Therefore, it has important clinical application value to explore the evaluation method of acoustic stimulation effectiveness. EEG has the advantages of high time resolution, low cost, no radiation, suitable for bedside detection, and can accurately and objectively reflect the changes of brain function. In this paper, EEG technique was used as a research tool. By comparing and analyzing the changes of EEG signal characteristic values under different types of sound (name, music) stimulation, we determined which stimulation triggered the greatest EEG response to the patient. At the same time, according to the different degree of response to the same sound stimulation, the auxiliary judgment of the state of consciousness can be realized according to the different degree of response of patients with different states of consciousness to the same sound stimulation. The main work of this thesis is as follows: (1) the background and present situation: the medical problems in the field of diagnosis and treatment of patients with severe consciousness disorder and EEG technology in the judgment and prognosis of consciousness state are introduced. Research overview and development trend. (2) Experimental scheme design: including the selection of experimental subjects, (3) Evaluation of the validity of acoustic stimulation: wavelet energy value and sample entropy were selected as EEG characteristic indexes, respectively, and MCS and vs were used as self-named stimuli. The EEG responses before and after three different sound stimuli were compared to compare the effectiveness of different acoustic stimuli. The results show that: firstly, the wavelet energy values of MCS and vs have significant changes before and after self-naming stimulation, but the sample entropy has no significant change. Secondly, the wavelet energy and entropy of MCS and vs were not significantly changed before and after the stimulation. Finally, before and after the music stimulation, the wavelet energy value of MCS has significant change, but the sample entropy has no significant change, while the wavelet energy value of vs and the sample entropy have no significant change. Therefore, EEG wavelet energy can effectively evaluate the effectiveness of different acoustic stimuli. But sample entropy is not suitable for evaluating the validity of sound stimulation. (4) the classification of conscious state: based on the energy value of 8-conductance wavelet under self-naming stimulus and music stimulus, the K-harmonic mean clustering method is used in this paper. A total of 33 patients with consciousness disorder were judged by the state of consciousness, and the correct rate of judgment was 78g.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:R749.1;TN911.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 譚旭平;劉建成;;腦電處理的Wigner分布交叉項(xiàng)的模糊濾波[J];北京生物醫(yī)學(xué)工程;2008年05期
2 王兆源,周龍旗;腦電信號(hào)的分析方法[J];第一軍醫(yī)大學(xué)學(xué)報(bào);2000年02期
3 黃建;王新;;小波閾值去噪的改進(jìn)方法[J];電子質(zhì)量;2007年09期
4 張崇;鄭崇勛;于曉琳;李小平;沈開泉;;基于腦電近似熵的腦機(jī)能疲勞狀態(tài)分析[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;2006年06期
5 韓清鵬;王平;王黎;聞邦椿;;疲勞狀態(tài)下EEG信號(hào)α波的最大李雅普諾夫指數(shù)估算[J];江南大學(xué)學(xué)報(bào);2006年05期
6 王寧紅;;神經(jīng)外科持續(xù)植物生存狀態(tài)病人的護(hù)理[J];全科護(hù)理;2010年29期
7 劉正平;馮召勇;楊衛(wèi)平;;基于小波去噪的微弱信號(hào)提取[J];制造業(yè)自動(dòng)化;2010年08期
8 李小兵;初孟;邱天爽;鮑海平;;一種基于經(jīng)驗(yàn)?zāi)B(tài)分解的時(shí)頻分布及其在EEG分析中的應(yīng)用[J];生物醫(yī)學(xué)工程學(xué)雜志;2007年05期
9 孟欣,沈恩華,陳芳,顧凡及;腦電圖復(fù)雜度分析中的粗粒化問題 I.過分粗;腿N復(fù)雜度的比較[J];生物物理學(xué)報(bào);2000年04期
10 楊春梅,萬(wàn)柏坤,綦宏志,高揚(yáng);老年性癡呆癥患者的EEG近似熵特征初探[J];天津大學(xué)學(xué)報(bào);2002年04期
相關(guān)碩士學(xué)位論文 前2條
1 周建芳;腦電信號(hào)的特征分析與研究[D];廣西師范大學(xué);2008年
2 樓恩平;抑郁癥腦電信號(hào)特征提取及分類研究[D];浙江師范大學(xué);2009年
本文編號(hào):2072251
本文鏈接:http://sikaile.net/yixuelunwen/jsb/2072251.html