張力帶鋼板重建骨盆后環(huán)穩(wěn)定性的解剖學(xué)研究及有限元分析
本文選題:骨盆環(huán) + 骨盆骨折 ; 參考:《山東大學(xué)》2016年博士論文
【摘要】:研究背景不穩(wěn)定性骨盆骨折,尤其是開放性骨盆骨折,常合并周圍血管、神經(jīng)的損傷,臨床上其致死率及致殘率較高。研究發(fā)現(xiàn),在整體骨盆環(huán)的穩(wěn)定性方面,骨盆前環(huán)的作用占了40%,而骨盆后環(huán)則占了60%,因此對(duì)于不穩(wěn)定性骨盆骨折的治療,內(nèi)固定重建骨盆后環(huán)的穩(wěn)定性成為整體骨盆環(huán)的治療中的關(guān)鍵操作。目前,骨盆后環(huán)的手術(shù)內(nèi)固定方式很多,各種內(nèi)固定方式各有優(yōu)缺點(diǎn)和手術(shù)適應(yīng)癥。骨盆后環(huán)張力帶鋼板(Posterior Pelvic Ring Tension Band Plate, PPRTBP)固定技術(shù)治療不穩(wěn)定性骨盆骨折具有操作簡單,手術(shù)創(chuàng)傷較小,手術(shù)操作安全,手術(shù)并發(fā)癥相對(duì)較少等優(yōu)點(diǎn),其在骨盆骨折的臨床治療上的應(yīng)用也越來越多。在臨床操作及發(fā)表的相關(guān)文獻(xiàn)中可發(fā)現(xiàn),骨盆后環(huán)張力帶鋼板的置放位置及方向在實(shí)際操作中有較大差異,譚國慶已對(duì)骨盆后環(huán)張力帶鋼板的三種臨床常見位置進(jìn)行了生物力學(xué)研究,提示置放在髂后上棘附近的張力帶鋼板其對(duì)骶髂關(guān)節(jié)分離的固定效果較好,提出了整體骨盆環(huán)“箍桶”式結(jié)構(gòu)理論,但關(guān)于骨盆后環(huán)張力帶鋼板具體的手術(shù)置放位置及方向未做進(jìn)一步研究。有限元分析方法,是一種理論生物力學(xué)研究方法。骨盆有限元分析就是利用數(shù)學(xué)近似的方法對(duì)真實(shí)的骨盆結(jié)構(gòu)進(jìn)行模擬,利用有限元軟件建造骨盆三維有限元模型,分析后研究模型的應(yīng)力、應(yīng)變及位移情況。有限元分析法已成為人體生物力學(xué)研究的重要方法。本研究旨在,利用整體骨盆環(huán)“箍桶”式理論,通過對(duì)整體骨盆環(huán)及骶髂關(guān)節(jié)、恥骨聯(lián)合關(guān)節(jié)的尸體解剖形態(tài)學(xué)研究,確定骨盆環(huán)中心平面在后方髂骨上的位置,測量其與髂后上棘(posterior superior iliac spine, PSIS)的距離,同時(shí)確定骨盆環(huán)中心平面的方向;然后,在解剖學(xué)研究基礎(chǔ)上,建立骨盆三維有限元分析模型,探討骨盆后環(huán)張力帶鋼板各不同固定方式的固定效果,篩選出最佳的固定方式,為臨床合理應(yīng)用張力帶鋼板重建骨盆后環(huán)穩(wěn)定性提供理論依據(jù)。第一部分 張力帶鋼板內(nèi)固定治療骨盆后環(huán)損傷的解剖形態(tài)學(xué)研究目的通過對(duì)骨盆實(shí)體標(biāo)本的觀察和測量,及利用Mimics、CAD逆向工程技術(shù),尋找整體骨盆環(huán)的中心平面,確定骨盆環(huán)中心平面在后方髂嵴的位置;進(jìn)一步測量后,確定骨盆環(huán)中心平面在后方髂嵴位置至髂后上棘的距離,并確定骨盆環(huán)中心平面的傾斜角度。為進(jìn)一步研究提供解剖基礎(chǔ)。方法選取防腐的成年人尸體骨盆標(biāo)本及干性骨盆標(biāo)本共12具,其中男性骨盆實(shí)體標(biāo)本8具,女性骨盆標(biāo)本4具,解剖處理后取得骨性骨盆標(biāo)本,分離骶髂關(guān)節(jié)及恥骨聯(lián)合關(guān)節(jié),暴露兩關(guān)節(jié)的關(guān)節(jié)面;選取健康成人骨盆CT平掃資料20例,其平掃厚度為1.0mm,像素512*512,備用。采用三種不同方法對(duì)骨盆進(jìn)行測量:一、骨盆實(shí)體標(biāo)本測量。把骶髂關(guān)節(jié)及恥骨聯(lián)合關(guān)節(jié)擬合成規(guī)則幾何形狀后,分別測量其幾何重心,連接兩幾何重心確定骨盆環(huán)中心平面的位置,觀察其與髂后上棘的位置關(guān)系,并確定其在后方髂嵴上的位置,測量髂后上棘與此位置的表面距離;確定髂后上棘及髂前上棘(anterior superior iliac spine, ASIS)連線所在平面,測量骨盆環(huán)中心平面與此平面的夾角。二、AutoCAD2014下骨盆標(biāo)本的測量。拍攝骨盆實(shí)體標(biāo)本的髂骨內(nèi)側(cè)面觀照片,導(dǎo)入AutoCAD軟件后,利用其強(qiáng)大的測量功能,確定骶髂關(guān)節(jié)及恥骨聯(lián)合關(guān)節(jié)的重心所在的骨盆環(huán)中心平面,并測量髂后上棘到此平面在后方髂嵴位置的距離;確定髂后上棘及髂前上棘連線,測量骨盆環(huán)中心平面與此連線夾角。三、Mimics 16.0下三維骨盆模型的測量。利用骨盆CT平掃圖片重建骨盆三維模型,然后在三維模式下確定骨盆環(huán)中心所在平面,測量髂后上棘到此平面的表面距離,及此平面與髂后上棘及髂前上棘連線的夾角。所得數(shù)據(jù)采用統(tǒng)計(jì)學(xué)軟件SPSS進(jìn)行處理,結(jié)果以平均數(shù)±標(biāo)準(zhǔn)誤表示。結(jié)果骨盆實(shí)體標(biāo)本的測量:骨盆環(huán)中心所在平面在后方髂嵴的位置與髂后上棘的表面距離為26.13±1.53mmm,骨盆環(huán)中心所在平面相對(duì)于髂后上棘與髂前上棘間連線的夾角為54.00±0.78。。AutoCAD2014下骨盆標(biāo)本的測量:骨盆環(huán)中心所在平面在后方髂嵴的位置與髂后上棘的表面距離為26.45±1.49mm,骨盆環(huán)中心所在平面相對(duì)于髂后上棘與髂前上棘間連線的夾角為54.75±0.94。。Mimics16.0下骨盆三維模型的測量:骨盆環(huán)中心所在平面在后方髂嵴的位置與髂后上棘的表面距離為25.62±0.95mmm,骨盆環(huán)中心所在平面相對(duì)于髂后上棘與髂前上棘間連線的夾角為55.46±0.51。。骨盆尸體標(biāo)本與骨盆三維模型測量數(shù)據(jù)合并后結(jié)果:骨盆環(huán)中心所在平面在后方髂嵴的位置與髂后上棘的表面距離為25.87±0.80mm;骨盆環(huán)中心所在平面相對(duì)于髂后上棘與髂前上棘間連線的夾角為55.05±0.45。。結(jié)論通過對(duì)人體骨盆解剖形態(tài)的觀察及測量,確定了整體骨盆環(huán)中心平面所在位置,髂后上棘處于其后下方。骨盆環(huán)中心平面在后方髂嵴位置與髂后上棘間表面距離為25.87±0.80mm;骨盆環(huán)中心所在平面相對(duì)于髂后上棘-髂前上棘連線所在平面向前向下傾斜55.05±0.45。,為進(jìn)一步研究奠定基礎(chǔ)。第二部分 骨盆三維有限元模型的建立及其有效性驗(yàn)證目的建立正常骨盆有限元分析模型,驗(yàn)證和分析其可靠性,為進(jìn)一步有限元分析骨盆損傷模型和骨盆后環(huán)張力帶鋼板固定模型奠定基礎(chǔ)。方法招募成年健康男性志愿者1名,經(jīng)過CT掃描后,得到層厚為1.Omm的骨盆CT橫斷面圖像,導(dǎo)入Mimics軟件建立骶骨及兩側(cè)髖骨的三維模型,經(jīng)Geomagic Studio軟件優(yōu)化處理后,導(dǎo)入有限元分析軟件Abaqus中,經(jīng)賦值、裝配、網(wǎng)格化、處理接觸等處理后,建立含有周圍韌帶結(jié)構(gòu)的完整骨盆三維有限元模型。模擬人體站立位,在兩側(cè)的髖臼設(shè)置邊界條件,骶骨終板上表面施加600N重力方向載荷,計(jì)算完整骨盆環(huán)的應(yīng)力、應(yīng)變及位移情況。結(jié)果骶骨終板上表面施加600N重力方向載荷后,骨盆有限元模型應(yīng)力傳導(dǎo)方向?yàn)閺镊竟墙K板上表面經(jīng)兩側(cè)的骶骨翼,通過骶髂關(guān)節(jié)后,經(jīng)骨盆弓狀線及坐骨大切跡處向前向下傳導(dǎo),最終傳導(dǎo)至雙側(cè)髖臼頂;骶骨相對(duì)于髂骨有向下向前移位的趨勢,而髂骨有旋轉(zhuǎn)的趨勢;整體骨盆環(huán)應(yīng)變較小,主要集中在左右骶髂關(guān)節(jié)的兩側(cè),骨盆前環(huán)恥骨聯(lián)合處的應(yīng)變幾乎可以忽略不計(jì)。結(jié)論利用Mimics 16.0、Geomagic Studio 2013及Abaqus 6.14重建了正常骨盆的三維有限元分析模型;此骨盆模型可靠,能較客觀地反映人體骨盆的解剖結(jié)構(gòu)和力學(xué)特性,可用于骨盆相關(guān)的有限元分析,為骨盆生物力學(xué)研究提供了一種重要方法。第三部分 不同方式張力帶鋼板重建骨盆后環(huán)穩(wěn)定性的三維有限元分析目的利用有限元分析的方法,比較多種張力帶鋼板固定方式治療骶髂關(guān)節(jié)分離損傷的內(nèi)固定療效,以期篩選出骨盆后環(huán)張力帶鋼板最佳的固定方式,為臨床合理應(yīng)用骨盆后環(huán)張力帶鋼板提供生物力學(xué)依據(jù)。方法招募成年健康男性志愿者1名,男性,24歲,骨盆CT掃描得到層厚為1.Omm、像素為512*512的骨盆CT橫斷面圖像,導(dǎo)入Mimics軟件建立骶骨及兩側(cè)髖骨的三維模型,經(jīng)Geomagic Studio軟件優(yōu)化處理后,導(dǎo)入大型有限元分析軟件Abaqus中,經(jīng)賦值、裝配、網(wǎng)格化、處理接觸等處理后,建立左骶髂關(guān)節(jié)分離的骨盆損傷有限元模型;利用SolidWorks軟件,繪制不同長度的3.5mm螺釘及骨盆重建鋼板,根據(jù)骨盆后方結(jié)構(gòu)測量數(shù)據(jù)預(yù)彎重建鋼板成不同形態(tài);張力帶鋼板模型及螺釘模型導(dǎo)入Abaqus中,與骨盆損傷模型裝配在一起,制作六種不同張力帶鋼板固定方式的骨盆內(nèi)固定模型,分別記為:髂后向上(IPAS)模型、髂后向下(IPAI)模型、髂后水平(IPAH)模型、髂上水平(ISAH)模型、髂上向下(ISAI)模型及髂下向上(IIAS)模型。模擬人體站立位狀態(tài),固定兩側(cè)髖臼,骶骨終板上表面施加600N重力方向載荷,記錄左骶髂關(guān)節(jié)線兩側(cè)骶骨及髂骨位移,比較各模型對(duì)骨盆后環(huán)穩(wěn)定性的固定效果。所得數(shù)據(jù)采用獨(dú)立變量t檢驗(yàn),進(jìn)行模型間兩兩比較。結(jié)果在骶骨終板上表面施加600N的垂直載荷后,骨盆損傷模型的左骶髂關(guān)節(jié)線骶骨側(cè)及髂骨側(cè)位移分別為0.524677±0.009845mm.0.947979±0.096923mm,明顯大于骨盆正常模型的0.070144±0.00284mm.0.550724±0.007925mm,兩者間差異有明顯統(tǒng)計(jì)學(xué)意義,p0.001。ISAI模型的左骶髂關(guān)節(jié)線骶骨側(cè)位移為0.261031±0.006321mm,髂骨側(cè)位移為0.380023±0.036695mm;ISAH模型的左骶髂關(guān)節(jié)線骶骨側(cè)位移為0.292494±0.009099mm,髂骨側(cè)位移為0.558186±0.038701mm;IPAS模型的左骶髂關(guān)節(jié)線骶骨側(cè)位移為0.313834±0.009324mm,髂骨側(cè)位移為0.483707±0.044013mm;IPAI模型的左骶髂關(guān)節(jié)線骶骨側(cè)位移為0.257551±0.008835mm,髂骨側(cè)位移為0.354244±0.040038mm;IPAH模型的左骶髂關(guān)節(jié)線骶骨側(cè)位移為0.272655±0.009401mm,髂骨側(cè)位移為0.362496±0.043095mm;IIAS模型的左骶髂關(guān)節(jié)線骶骨側(cè)位移為0.295074±0.010359mm,髂骨側(cè)位移為0.626016±0.045346mm。所有骨盆固定模型的位移均小于骨盆損傷模型,差異有統(tǒng)計(jì)學(xué)意義,p0.05;IPAI模型、IPAH模型及ISAI模型間比較,IPAI模型位移最小,但三者間差異無統(tǒng)計(jì)學(xué)意義;ISAI模型位移小于ISAH模型,差異有統(tǒng)計(jì)學(xué)意義;IPAI模型、IPAH模型位移均小于IPAS模型,差異有統(tǒng)計(jì)學(xué)意義;IPAS模型髂骨側(cè)位移小于IIAS模型位移,差異有統(tǒng)計(jì)學(xué)意義。結(jié)論張力帶鋼板重建骨盆后環(huán)穩(wěn)定性時(shí)要考慮整體骨盆環(huán)的形態(tài)結(jié)構(gòu),利用整體骨盆環(huán)“箍桶”式生物力學(xué)結(jié)構(gòu)。經(jīng)骨盆有限元分析,髂后向下模型、髂后水平模型及髂上向下模型的固定效果最好,優(yōu)于其它三種張力帶鋼板固定方式;相同固定位置不同固定方向比較,與骨盆環(huán)中心平面平行方向固定效果最好;不同固定位置相同固定方向比較,髂后上棘位置最佳,但與髂后上棘上方約26.0mm位置固定差異無明顯統(tǒng)計(jì)學(xué)意義,髂后上棘下方固定位置最差。結(jié)合前面的骨盆解剖學(xué)研究,認(rèn)為骨盆后環(huán)張力帶鋼板的固定位置在髂后上棘及其上方26.0mm范圍內(nèi)最佳,固定方向平行于骨盆環(huán)中心平面最佳,較髂后上棘-髂前上棘間連線所在平面向前向下傾斜約55.0°。
[Abstract]:The study of unstable pelvic fractures, especially open pelvic fractures, often combined with peripheral vascular and nerve injuries, has a high clinical fatality rate and high disability rate. The study found that the role of the pelvic anterior ring is 40% and the posterior pelvic ring is 60% in the overall pelvic ring stability, and therefore the treatment of unstable pelvic fractures The stability of internal fixation and reconstruction of the posterior pelvic ring has become a key operation in the treatment of the whole pelvic ring. At present, there are many internal fixation methods for the posterior pelvic ring, and various internal fixation methods have advantages and disadvantages and surgical indications. The fixation technique of the posterior pelvic ring tension band (Posterior Pelvic Ring Tension Band Plate, PPRTBP) is used for the treatment of instability. Qualitative pelvic fractures have the advantages of simple operation, small surgical trauma, safe operation and relatively few complications, and more and more applications in the clinical treatment of pelvic fractures. The position and direction of the placement and direction of the posterior pelvic ring tension band plate can be found in the related literature. Tan Guoqing has made a biomechanical study of the three common clinical positions of the tension band plate of the pelvic posterior ring, suggesting that the tension band plate near the posterior upper iliac spine has a better fixation effect on the separation of the sacroiliac joint. The whole pelvic ring "hoop bucket" structure theory is put forward, but the tension band steel plate for the pelvic posterior ring is made. The finite element analysis method is a theoretical biomechanical research method. The finite element analysis of the pelvis is to simulate the real pelvis structure by using the approximate method of mathematics. The finite element software is used to build the three-dimensional finite element model of the pelvis, and the stress of the model is analyzed after the analysis. The finite element analysis has become an important method for the study of human biomechanics. This study aims to determine the position of the central plane of the pelvic ring on the posterior iliac bone by using the holistic pelvic ring "hoop" theory, and to determine the position of the central plane of the pelvic ring on the posterior bone of the iliac bone by the study of the whole pelvic ring and sacroiliac joint. The distance between the posterior superior iliac spine (PSIS) and the direction of the central plane of the pelvic ring is determined at the same time. Then, on the basis of the anatomical study, the three-dimensional finite element analysis model of the pelvis is established to explore the fixation effects of the different fixation methods of the tension band plate of the pelvic posterior ring, and to screen out the best way of fixation, which is reasonable for clinical practice. The application of tension band steel plate in the reconstruction of posterior pelvic ring stability provides a theoretical basis. The first part of the tension band plate internal fixation for the treatment of posterior pelvic ring injury anatomic study objective through the observation and measurement of pelvic solid specimens, and the use of Mimics, CAD reverse engineering technology to find the central plane of the whole pelvic ring, to determine the pelvic ring in the pelvic ring The position of the heart plane in the posterior iliac crest; after further measurement, the distance between the central plane of the pelvic crest and the posterior iliac spine is determined and the inclination angle of the central plane of the pelvic ring is determined. The anatomical basis for further study is provided. 12 specimens of the pelvic and dry pelvic specimens of the antiseptic adult cadavers, among them, are selected. 8 specimens of sexual pelvis, 4 pelvic specimens, bone pelvic specimens, sacroiliac joint and symphysis joint joint, two joint surfaces exposed, 20 cases of healthy adult pelvis CT scanning data were selected, the plain scan thickness was 1.0mm, pixel 512*512, reserve. The pelvis was measured by three different methods: 1 After the joint joint joint of the sacroiliac joint and the joint of the pubis joint was synthesized, the geometric center of gravity was measured and the position of the central plane of the pelvic ring was determined by the two geometric center of gravity, and the position relationship with the posterior upper iliac spine was observed, and the position on the posterior iliac crest was determined, and the surface of the posterior upper iliac spine and the surface of this position were measured. Distance; determine the plane of the upper spine of the posterior iliac and the superior iliac spine (anterior superior iliac spine, ASIS), and measure the angle between the central plane of the pelvic ring and the plane of the pelvis. Two, the measurement of the pelvis specimen under AutoCAD2014. Photograph the inner surface of the iliac bone in the specimen of the pelvis, and after guiding the AutoCAD software, using its powerful measuring function, determine the function of its powerful measurement. The center plane of the center of the center of the center of gravity of the sacroiliac joint and the symphysis pubis joint, and measuring the distance between the posterior iliac spine and the posterior iliac crest at this plane; determining the posterior superior iliac spine and the anterior superior iliac spine line, measuring the center plane of the pelvis and the angle of this connection. Three, the measurement of the three-dimensional pelvis model under the Mimics 16. The three-dimensional model of the pelvis was reconstructed, then the plane of the center of the pelvic ring was determined in the three-dimensional model, the surface distance of the posterior upper iliac spine to the plane was measured, and the angle between the plane and the posterior superior iliac spine and the anterior superior iliac spine. The data were processed by the statistical software SPSS, and the results were mistaken for an average number of standards. The position of the center of the pelvic crest located in the posterior iliac crest and the surface of the posterior iliac spine is 26.13 + 1.53mmm, and the angle of the center of the pelvic ring is relative to the angle between the posterior superior iliac superior spine and the anterior superior iliac spinous spine. The position of the pelvis at the center of the pelvic ring is located at the posterior iliac crest. The distance between the surface of the posterior superior iliac spine is 26.45 + 1.49mm, and the angle of the center of the pelvic ring is relative to the angle between the posterior superior iliac superior spine and the anterior superior iliac spine. The surface of the pelvic ring center is located at the posterior iliac crest and the surface distance between the posterior iliac spine and the upper iliac spine is 25.62 + 0.95mmm, and the pelvic ring is in the pelvic ring. The angle between the plane of the heart and the interspinal cord between the posterior superior iliac superior spine and the anterior superior iliac spine is 55.46 + 0.51.., and the result is that the surface of the center of the pelvic crest is 25.87 + 0.80mm at the posterior iliac crest and the surface of the posterior iliac spine, and the plane of the center of the pelvic ring is relative to the posterior iliac. The angle between the spine and the anterior superior iliac spine is 55.05 + 0.45... conclusion by observing and measuring the anatomy of the pelvis, the position of the central plane of the whole pelvic ring is determined and the posterior upper iliac spine is in the lower part. The center plane of the pelvic ring is 25.87 + 0.80mm between the posterior iliac crest and the posterior superior iliac spine, and the center of the pelvic ring is at the center of the pelvis. The plane is inclined to 55.05 + 0.45. in plane relative to the plane of the posterior superior iliac spine and the anterior iliac spine line, which lays the foundation for further study. The establishment of the second part of the three-dimensional finite element model of the pelvis and its effectiveness verification aim to establish the finite element analysis model of the normal pelvis, to verify and analyze its reliability, for further finite element analysis of bone. Methods 1 adult healthy male volunteers were recruited from the pelvis injury model and the posterior ring tension band plate model. After CT scanning, the CT cross-sectional image of the pelvic thickness of 1.Omm was obtained. Mimics software was introduced to establish the three-dimensional model of the sacrum and the two sides of the hip bone. After the optimization of the Geomagic Studio software, the finite element was introduced. In the software Abaqus, after assignment, assembly, grid and contact processing, a three-dimensional finite element model of a complete pelvis containing the surrounding ligament structure is established. The body standing position is simulated, the boundary conditions are set on the two sides of the acetabulum, and the 600N gravity load is applied on the surface of the sacral end plate to calculate the stress, strain and displacement of the complete pelvic ring. Results after the 600N gravity load was applied to the upper surface of the sacral endplate, the stress conduction of the pelvic finite element model was from the sacral wing on both sides of the sacral endplate, through the sacroiliac joint, through the pelvic arch and the large incisor at the large incisal incisor, eventually conducting to the double acetabular top; the sacral bone had a downward forward relative to the iliac bone. The trend of displacement, while the trend of iliac bone rotation, the overall pelvic ring strain is smaller, mainly concentrated on both sides of the sacroiliac joint, and the strain of the symphysis of the pelvis is almost negligible. Conclusion the three-dimensional finite element analysis model of the normal pelvis was reconstructed with Mimics 16, Geomagic Studio 2013 and Abaqus 6.14; The model is reliable and can objectively reflect the anatomical structure and mechanical properties of the human pelvis. It can be used for the finite element analysis of pelvis. It provides an important method for the study of pelvis biomechanics. Third three dimensional finite element analysis of the stability of the posterior pelvic ring for the reconstruction of the pelvic posterior ring with different ways of tension band steel plate is used in the finite element analysis method. To compare the internal fixation effects of multiple tension band plate fixation for sacroiliac joint injury, in order to screen out the best fixation method of the posterior pelvic ring tension band plate, and provide a biomechanical basis for the rational application of the posterior ring tension band plate in the pelvis. Methods 1 male healthy male volunteers, 24 years old and pelvic CT scan were recruited. The CT cross section image of the pelvis with a thickness of 1.Omm and a pixel of 512*512 was obtained, and Mimics software was introduced to establish the three-dimensional model of the sacrum and the two sides of the hip bone. After the optimization of the Geomagic Studio software, the large finite element analysis software Abaqus was introduced. After assignment, assembly, grid and contact treatment, the pelvis loss of the separation of the left sacroiliac joint was established. The finite element model was injured and the SolidWorks software was used to draw different lengths of 3.5mm screws and pelvis reconstructive plates to form different forms according to the measurement data of the posterior structure of the pelvis, and the tension band plate model and screw model were introduced into Abaqus, together with the pelvis damage model, to make six different tension band plates fixed. The model of pelvic internal fixation was recorded as the IPAS model, the posterior iliac downward (IPAI) model, the posterior iliac level (IPAH) model, the upper iliac level (ISAH) model, the upper and lower iliac (ISAI) model and the lower iliac (IIAS) model, simulating the standing position of the human body, fixing the sides of the acetabulum, and applying the 600N gravity load on the surface of the sacral end plate. The displacements of sacral and iliac bone on both sides of the left sacroiliac line were recorded and the stability of the posterior pelvic ring was compared with each model. The data obtained by independent variable t test and 22 comparison between the models were carried out. The results of the 600N vertical load on the surface of the sacral endplate were divided into the sacral side and iliac side displacements of the left sacroiliac line. The difference between the 0.524677 + 0.009845mm.0.947979 + 0.096923mm and the normal model of the pelvis was significantly greater than that of the normal model of the pelvis 0.070144 + 0.00284mm.0.550724 + 0.007925mm. The differences were statistically significant. The sacral lateral displacement of the left sacroiliac line in the p0.001.ISAI model was 0.261031 + 0.006321mm, the lateral displacement of the iliac bone was 0.380023 + 0.036695mm, and the left sacral of the ISAH model The lateral displacement of the sacrosacroid of the iliac joint was 0.292494 0.009099mm, and the lateral displacement of the iliac bone was 0.558186 + 0.038701mm; the lateral displacement of the sacrosacral side of the left sacroiliac line in the IPAS model was 0.313834 + 0.009324mm, and the lateral displacement of the iliac bone was 0.483707 + 0.044013mm; the lateral displacement of the sacral joint in the left sacroiliac joint of the IPAI model was 0.257551 + 0.008835mm, and the lateral displacement of the iliac bone was 0.354244. The lateral displacement of the sacrosacral side of the left sacroiliac line in the IPAH model was 0.272655 + 0.009401mm and the lateral displacement of the iliac bone was 0.362496 + 0.043095mm; the lateral displacement of the sacrosacroid side of the left sacroiliac line in the IIAS model was 0.295074 + 0.010359mm, and the displacement of the iliac side displacement was 0.626016 + 0.045346mm. in all the pelvic fixation models were less than the pelvic injury model. Different statistical significance, P0.05, IPAI model, IPAH model and ISAI model comparison, IPAI model displacement is the smallest, but there is no statistical difference between the three, ISAI model displacement less than ISAH model, the difference is statistically significant; IPAI model, IPAH model displacement is less than IPAS model, the difference is statistically significant; IPAS model iliac side displacement is small IIAS model displacement, the difference is statistically significant. Conclusion the tension band plate reconstruction of the pelvic posterior ring stability should consider the overall pelvic ring shape and structure, using the whole pelvic ring "hoop" biomechanical structure. Through the pelvic finite element analysis, the posterior downward model of iliac, the posterior iliac level model and the upper iliac downward model are best. In the other three kinds of tension band plate fixation methods, the same fixed position and different fixed directions, parallel to the central plane of the pelvic ring.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:R687;R322.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉現(xiàn)景;鋼針張力帶固定治療肩鎖關(guān)節(jié)完全性脫位[J];中原醫(yī)刊;2003年01期
2 鄭瑛,金碧霞;閉合張力帶治療新鮮Ⅲ度肩鎖關(guān)節(jié)脫位的護(hù)理[J];現(xiàn)代中西醫(yī)結(jié)合雜志;2005年22期
3 陳琦;張力帶治療肱骨上段骨折[J];現(xiàn)代醫(yī)藥衛(wèi)生;2005年08期
4 陳寶;王衛(wèi)明;;張力帶固定治療腓骨下端骨折[J];現(xiàn)代中西醫(yī)結(jié)合雜志;2007年31期
5 李冬嚴(yán);張春光;馬郡;侯勇;孟高樂;李德欣;張震宇;;張力帶治療早期四肢大面積皮膚缺損[J];吉林醫(yī)學(xué);2007年17期
6 李紅;余春蓮;;張力帶治療尺骨鷹嘴骨折患者的護(hù)理及康復(fù)[J];中國現(xiàn)代藥物應(yīng)用;2009年03期
7 蒙赤明;;平行穿針與交叉穿針加張力帶固定治療兒童肱骨髁上骨折療效比較[J];廣西醫(yī)學(xué);2012年07期
8 崔永鋒;朱寶華;王利明;管功奎;;張力帶原理力學(xué)基礎(chǔ)的探討[J];中醫(yī)正骨;2012年07期
9 陳曉明,張健,張勁松;張力帶法治療第五跖骨粗隆骨折32例分析[J];吉林醫(yī)學(xué);1998年01期
10 黃均雄;張力帶的應(yīng)用體會(huì)[J];廣西中醫(yī)學(xué)院學(xué)報(bào);1999年03期
相關(guān)會(huì)議論文 前10條
1 崔永鋒;朱寶華;管功奎;王利明;;張力帶原理在骨折治療中力學(xué)基礎(chǔ)的探討[A];浙江省醫(yī)學(xué)會(huì)骨科學(xué)分會(huì)30年慶典暨2011年浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2011年
2 李馳;金廣建;陳雷;楊勝武;;髂骨移植合并張力帶固定治療嚴(yán)重粉碎性尺骨鷹嘴骨折[A];浙江省醫(yī)學(xué)會(huì)骨科學(xué)分會(huì)30年慶典暨2011年浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2011年
3 卓高豹;王健;張懷保;;張力帶法固定甲板治療甲床損傷[A];2012年浙江省手外科學(xué)暨顯微外科學(xué)學(xué)術(shù)年會(huì)論文集[C];2012年
4 周翔;;后路張力帶鋼板與經(jīng)皮骶髂關(guān)節(jié)螺釘固定治療骨盆后環(huán)骨折脫位的比較研究[A];2013中國工程院科技論壇暨浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文摘要集[C];2013年
5 王娟;朱衛(wèi)星;茹國華;;外側(cè)張力帶配合中藥薰洗治療肱骨髁上骨折68例[A];第二屆第二次中醫(yī)護(hù)理學(xué)術(shù)交流會(huì)議論文匯編[C];2007年
6 卓高豹;王健;張懷保;;張力帶法固定甲板治療甲床損傷[A];中華醫(yī)學(xué)會(huì)第10屆全國顯微外科學(xué)術(shù)會(huì)議暨世界首例斷肢再植成功50周年慶典論文集[C];2013年
7 卓高豹;王健;張懷保;;張力帶法固定甲板治療甲床損傷[A];2012年浙江省骨科學(xué)術(shù)年會(huì)論文集[C];2012年
8 高山;馬克;;克氏針鋼絲半側(cè)張力帶術(shù)治療外踝骨折[A];寧夏醫(yī)學(xué)會(huì)骨科學(xué)分會(huì)第六屆學(xué)術(shù)年會(huì)資料匯編[C];2011年
9 高山;馬克;;克氏針鋼絲半側(cè)張力帶術(shù)治療外踝骨折[A];寧夏醫(yī)學(xué)會(huì)骨科分會(huì)第七屆學(xué)術(shù)年會(huì)論文匯編[C];2012年
10 周謀望;;張力帶滌綸線內(nèi)固定治療髕骨骨折及術(shù)后康復(fù)[A];中國康復(fù)醫(yī)學(xué)會(huì)第四屆會(huì)員代表大會(huì)暨第三屆中國康復(fù)醫(yī)學(xué)學(xué)術(shù)大會(huì)論文匯編[C];2001年
相關(guān)博士學(xué)位論文 前2條
1 何吉亮;張力帶鋼板重建骨盆后環(huán)穩(wěn)定性的解剖學(xué)研究及有限元分析[D];山東大學(xué);2016年
2 譚國慶;張力帶鋼板重建骨盆后環(huán)穩(wěn)定性的生物力學(xué)研究[D];山東大學(xué);2012年
相關(guān)碩士學(xué)位論文 前2條
1 彭源祥;Cable pin系統(tǒng)與克式針張力帶固定治療髕骨骨折的Meta分析[D];南昌大學(xué)醫(yī)學(xué)院;2015年
2 周翔;后路張力帶鋼板與經(jīng)皮骶髂關(guān)節(jié)螺釘固定治療骨盆后環(huán)骨折脫位的比較研究[D];浙江大學(xué);2012年
,本文編號(hào):2078890
本文鏈接:http://sikaile.net/yixuelunwen/jichuyixue/2078890.html