長鏈雙鏈RNA調(diào)控內(nèi)源性免疫和慢性炎癥的分子機制研究
本文選題:雙鏈RNA + 抗病毒 ; 參考:《第四軍醫(yī)大學(xué)》2016年博士論文
【摘要】:雙鏈RNA(dsRNA)是具有兩條互補鏈的RNA,依據(jù)其堿基對長度,將長于30bp的dsRNA稱為長鏈dsRNA。近二十年來研究發(fā)現(xiàn)短鏈dsRNA(30bp)在生命活動中起著重要作用,在真核細胞中主要以microRNA的形式調(diào)控基因的表達,對其調(diào)控機制的研究已經(jīng)較為完整。microRNA的前體pre-microRNA是真核細胞中目前發(fā)現(xiàn)的一類長鏈dsRNA,而在病理過程中,細胞中也會出現(xiàn)大量長鏈dsRNA,目前對于這些長鏈dsRNA的作用機制尚不清楚。本課題分別針對外源性和內(nèi)源性dsRNA及其生物學(xué)功能,通過建立相關(guān)的疾病模型,探討了dsRNA是否以及如何參與疾病的病理過程,揭示了外源性和內(nèi)源性dsRNA分別在抗病毒免疫應(yīng)答和氧化應(yīng)激引起的代謝紊亂中的調(diào)控機制。第一部分:靶向外源性dsRNA激活抗病毒固有免疫的分子機制研究病毒感染會導(dǎo)致宿主細胞內(nèi)dsRNA大量產(chǎn)生。在哺乳動物細胞中,這些dsRNA會被一套特異的dsRNA受體識別成危險信號,其中主要的胞內(nèi)受體是RLR家族受體。rlr受體可以識別并結(jié)合外源性的長鏈dsrna,并將其作為病原信號(pamps)通過死亡結(jié)構(gòu)域傳遞給下游,激活干擾素介導(dǎo)的抗病毒信號通路,在嚴重感染時甚至激活細胞凋亡。本部分研究中,我們提出了一種新的抗病毒策略,即通過識別dsrna、并以類似于rlr受體的方式激活下游信號,誘導(dǎo)程序性壞死以快速清除被感染的細胞,從而達到廣譜高效抗病毒的目的。我們首先運用分子生物學(xué)方法改構(gòu)了rlr受體并將其命名為dscare,證明了被腺病毒(adv)和呼吸道合胞病毒(rsv)感染的a549細胞能被dscare快速殺傷。運用實時定量pcr、elisa和westernblotting等方法,我們發(fā)現(xiàn)雖然dscare沒有激活細胞內(nèi)ifn-β通路,但是促進了炎性因子il-1β的表達和分泌。通過經(jīng)典的細胞死亡標志的分析,如細胞形態(tài)學(xué)檢測、磷脂酰絲氨酸外翻、caspase活化、化學(xué)抑制劑阻斷特定通路等,我們發(fā)現(xiàn)dscare主要通過激活細胞程序性壞死來殺死被感染的細胞而沒有激活細胞凋亡。通過基因沉默和化學(xué)阻斷的方式,發(fā)現(xiàn)dscare通過溶酶體蛋白組織蛋白酶d介導(dǎo)了necrosome復(fù)合物形成,繼而激活程序性壞死通路,而通過rna干涉的方法證明了在這個通路中rip1和rip3都是dscare發(fā)揮抗病毒活性的重要分子;瘜W(xué)阻斷細胞凋亡和程序性壞死的對照實驗進一步表明,抑制劑nec-1通過抑制程序性壞死而阻斷了dscare的抗病毒活性,抑制劑zvad阻斷細胞凋亡則對dscare的抗病毒活性沒有影響。研究結(jié)果表明,重組rlr受體dscare繞過了通常被激活的干擾素抗病毒途徑,直接激活了程序性壞死通路,從而達到了快速殺傷被感染細胞的目的。這個機制的發(fā)現(xiàn)和提出為發(fā)展新的高效抗病毒藥物提供了理論依據(jù)。第二部分:內(nèi)源性dsrna調(diào)控血管內(nèi)皮功能紊亂的分子機制研究在高血糖引起的血管病變過程中,氧化應(yīng)激和炎癥導(dǎo)致的血管內(nèi)皮功能紊亂是主要發(fā)病誘因。雖然ambati等報道了在氧化應(yīng)激和炎性狀態(tài)下內(nèi)源性dsrna會大量累積并對細胞產(chǎn)生毒性,但是dsrna在高血糖誘導(dǎo)的血管內(nèi)皮病變過程中是否參與以及其生物學(xué)功能尚不清楚。本部分研究旨在探索內(nèi)源性dsrna是否參與血管內(nèi)皮細胞的氧化應(yīng)激及功能紊亂,揭示內(nèi)源性dsrna參與調(diào)控的信號通路。我們運用dsrna特異性抗體j2通過免疫組織化學(xué)的方法來檢測可能在高血糖小鼠和高糖刺激的人臍靜脈內(nèi)皮細胞(huvec)細胞中產(chǎn)生的dsrna,結(jié)果顯示在高血糖小鼠的胸主動脈血管內(nèi)皮中和高糖刺激的HUVEC細胞中均有大量的dsRNA產(chǎn)生。通過免疫沉淀的方法,我們捕獲了在高糖刺激的HUVEC細胞中產(chǎn)生的dsRNA,并通過構(gòu)建文庫和DNA測序的方法鑒定捕獲到的dsRNA,發(fā)現(xiàn)這些dsRNA與Alu RNA Sc亞家族高度同源。我們通過基因克隆的方法構(gòu)建了真核表達Alu RNA的重組質(zhì)粒。運用實時定量PCR、ELISA、Western Blotting等方法,通過比較高糖刺激的HUVEC細胞與Alu RNA轉(zhuǎn)染的HUVEC細胞的抗氧化酶系統(tǒng)和氧化應(yīng)激標志物,我們在HUVEC細胞中檢查了捕獲到的dsRNA對內(nèi)皮細胞功能的影響。結(jié)果顯示,與高糖刺激的促氧化應(yīng)激和促炎作用類似,Alu RNA過表達促進了活性氧簇(ROS)的產(chǎn)生,并且上調(diào)了IL-1β的表達和分泌,而且Alu RNA抑制了內(nèi)皮細胞一氧化氮合酶eNOS和超氧化物歧化酶SOD2的表達。通過化學(xué)清除ROS和化學(xué)抑制NFκB的活化,我們發(fā)現(xiàn)Alu RNA通過促進ROS產(chǎn)生和激活NFκB來抑制抗氧化酶的表達;而通過構(gòu)建Alu RNA的功能缺失突變體,我們發(fā)現(xiàn)Alu RNA對多種酶的表達抑制是依賴于Alu RNA在轉(zhuǎn)錄和翻譯水平的負調(diào)控機制。我們的研究揭示了內(nèi)源性dsRNA——Alu RNA在高糖刺激下在血管內(nèi)皮細胞中大量積累的現(xiàn)象,闡述了內(nèi)源性Alu RNA激活NFκB通路促進氧化應(yīng)激和炎癥,并通過NFκB通路、轉(zhuǎn)錄和(或)翻譯水平兩種方式負調(diào)控抗氧化酶eNOS和SOD2表達,從而進一步加重細胞內(nèi)氧化應(yīng)激這一分子機制。這些發(fā)現(xiàn)更新了對內(nèi)皮細胞功能紊亂的調(diào)控機制的理解,提出了內(nèi)源性dsRNA調(diào)控代謝紊亂類疾病的發(fā)生發(fā)展的新理論。
[Abstract]:Double stranded RNA (dsRNA) is a RNA with two complementary chains. According to its base pair length and 30bp dsRNA called long chain dsRNA. for nearly twenty years, it has been found that short chain dsRNA (30bp) plays an important role in life activities. In eukaryotic cells, the expression of the gene is regulated mainly in the form of microRNA, and the study of its regulation mechanism has been comparatively studied. The precursor pre-microRNA of the complete.MicroRNA is a class of long chain dsRNA found in eukaryotic cells, and a large number of long chain dsRNA will appear in the cells in the pathological process. The mechanism of the action of these long chain dsRNA is still unclear. This topic is aimed at exogenous and endogenous dsRNA and its biological functions, by establishing related diseases. The disease model, the study of whether and how dsRNA participates in the pathological process of the disease, reveals the regulatory mechanism of exogenous and endogenous dsRNA in the metabolic disorder caused by antiviral immune response and oxidative stress. Part 1: the molecular mechanism of targeting exogenous dsRNA to activate antiviral disease The intracellular dsRNA is produced in large quantities. In mammalian cells, these dsRNA can be identified as a dangerous signal by a set of specific dsRNA receptors, in which the main intracellular receptor is the RLR family receptor.Rlr receptor that recognizes and combines exogenous long chain dsRNA, and passes it as a pathogen signal (PAMPs) through the death domain to the downstream and activates the stem. In this part, we propose a new antiviral strategy for activating downstream signals by identifying dsRNA and activating downstream signals in a manner similar to the RLR receptor, inducing programmed necrosis to quickly remove infected cells and thus achieve broad-spectrum and efficient resistance. The purpose of the virus. We first modified the RLR receptor by molecular biology and named it dscare, proving that A549 cells infected by adenovirus (ADV) and respiratory syncytial virus (RSV) can be quickly killed by dscare. Using real-time quantitative PCR, ELISA, and westernblotting methods, we found that dscare did not activate intracellular if. N- beta pathway, but promotes the expression and secretion of the inflammatory factor IL-1 beta. Through the analysis of the classic cell death markers, such as cell morphological detection, phosphatidyl serine exotropion, caspase activation, chemical inhibitors block specific pathways, we found that dscare mainly killed the infected cells by activating cell programmed necrosis. There was activation of apoptosis. Through gene silencing and chemical blocking, dscare was found to mediate the formation of necrosome complexes through lysosomal protein cathepsin D and then activate the programmed necrosis pathway, and the RNA interference method proved that rip1 and RIP3 are important molecules of dscare to play antiviral activity in this pathway. A control experiment that blocked apoptosis and programmed necrosis further indicated that inhibitor nec-1 blocked the antiviral activity of dscare by inhibiting procedural necrosis. Inhibitor zVAD blocked apoptosis and had no effect on the antiviral activity of dscare. The results showed that the recombinant RLR receptor dscare bypassed the normally activated interferon. The antiviral pathway directly activates the programmed necrosis pathway to achieve the purpose of rapid killing of infected cells. The discovery of this mechanism provides a theoretical basis for the development of new highly effective antiviral drugs. The second part: the molecular mechanism of endogenous dsRNA regulation of vascular endothelial dysfunction in blood vessels caused by hyperglycemia Vascular endothelial dysfunction caused by oxidative stress and inflammation is the main cause of disease during the process of disease. Although ambati and other reports have reported the accumulation and toxicity of endogenous dsRNA in oxidative stress and inflammatory conditions, dsRNA is involved in the process of hyperglycemia induced vascular endothelial disease and its biological function. The purpose of this study is to explore whether endogenous dsRNA is involved in oxidative stress and dysfunction in vascular endothelial cells and to reveal the signaling pathways involved in the regulation of endogenous dsRNA. We use dsRNA specific antibody J2 to detect human umbilical vein endothelial cells in hyperglycemic mice and high glucose stimulated human umbilical veins by immunohistochemical method. The dsRNA produced in the cell (HUVEC) cells showed a large number of dsRNA production in the thoracic aorta endothelium of the hyperglycemic mice and in the high glucose stimulated HUVEC cells. By immunoprecipitation, we captured the dsRNA produced in the HUVEC cells stimulated by high glucose and identified by the construction of Library and DNA sequencing. The obtained dsRNA was found to be highly homologous to the Alu RNA Sc subfamily. We constructed a recombinant plasmid for the eukaryotic expression of Alu RNA by gene cloning. We used real-time quantitative PCR, ELISA, Western Blotting and other methods to compare the antioxidant enzyme system and oxidation response of the cells with high sugar stimulated HUVEC cells and transfected cells. We examined the effects of the captured dsRNA on endothelial cell function in HUVEC cells. The results showed that the overexpression of Alu RNA promoted the production of reactive oxygen clusters (ROS), increased the expression and secretion of IL-1 beta, and the Alu RNA inhibited nitric oxide in endothelial cells. The expression of synthase eNOS and superoxide dismutase SOD2. Through chemical removal of ROS and chemical inhibition of the activation of NF kappa B, we found that Alu RNA inhibits the expression of antioxidant enzymes by promoting ROS production and activating NF kappa B. The negative regulation mechanism of transcriptional and translation levels. Our study revealed the accumulation of endogenous dsRNA - Alu RNA in vascular endothelial cells stimulated by high glucose, and explained that endogenous Alu RNA activates NF kappa B pathway to promote oxidative stress and inflammation, and negatively regulates oxygen resistance through NF kappa B pathway, transtranslation and / or translation levels. The expression of enzyme eNOS and SOD2 further aggravates the molecular mechanism of intracellular oxidative stress. These discoveries update the understanding of the regulatory mechanism of endothelial dysfunction and suggest a new theory that endogenous dsRNA regulates the development of metabolic disorders.
【學(xué)位授予單位】:第四軍醫(yī)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:R3416
【相似文獻】
相關(guān)期刊論文 前10條
1 魯慧英;Detection of hepatitis C virus RNA sequences in cholangiocarcinomas in Chinese and American patients[J];Chinese Medical Journal;2000年12期
2 ;Detection the HCV RNA by PCR-microplate hybridization method from clinical specimens[J];中國輸血雜志;2001年S1期
3 付漢江,鄭曉飛;類mRNA RNA研究進展[J];國外醫(yī)學(xué)(分子生物學(xué)分冊);2002年04期
4 Verheyden B ,徐其武;口服脊髓灰質(zhì)炎疫苗核殼和RNA的穩(wěn)定性[J];國外醫(yī)學(xué).預(yù)防.診斷.治療用生物制品分冊;2002年01期
5 CMBE譯文組;探索小RNA的功能[J];現(xiàn)代臨床醫(yī)學(xué)生物工程學(xué)雜志;2004年03期
6 沈維干;RNA interference and its current application in mammals[J];Chinese Medical Journal;2004年07期
7 ;Potent and specific inhibition of SARS-CoV antigen expression by RNA interference[J];Chinese Medical Journal;2005年09期
8 孫娣;汪洋;張麗娟;閆玉清;;一種簡捷提取植物總RNA的方法[J];黑龍江醫(yī)藥;2005年06期
9 熊慧華;于世英;胡廣原;莊亮;;Effects of Survivin Expression Suppressed by Short Hairpin RNA on MCF-7 Cells[J];華中科技大學(xué)學(xué)報(醫(yī)學(xué)英德文版);2006年03期
10 楊益超;;RNA干擾及其在醫(yī)學(xué)中的應(yīng)用[J];廣西醫(yī)學(xué);2007年10期
相關(guān)會議論文 前10條
1 金由辛;;面向21世紀的RNA研究[A];面向21世紀的科技進步與社會經(jīng)濟發(fā)展(下冊)[C];1999年
2 ;第四屆RNA全國研討會大會報告日程安排[A];第四屆全國RNA進展研討會論文集[C];2005年
3 ;Function of Transfer RNA Modifications in Plant Development[A];植物分子生物學(xué)與現(xiàn)代農(nóng)業(yè)——全國植物生物學(xué)研討會論文摘要集[C];2010年
4 王峰;張秋平;陳金湘;;棉花總RNA的快速提取方法[A];中國棉花學(xué)會2011年年會論文匯編[C];2011年
5 關(guān)力;陳本iY;iJ云虹;郭培芝;魏重琴;邱蘇吾;苗健;;關(guān)于動物}D~T中RNAn,定方法的研究[A];中國生理科學(xué)會學(xué)術(shù)會議論文摘要匯編(生物化學(xué))[C];1964年
6 夏海濱;;小RNA在免疫學(xué)領(lǐng)域中的應(yīng)用研究進展[A];中國免疫學(xué)會第五屆全國代表大會暨學(xué)術(shù)會議論文摘要[C];2006年
7 ;The stability of hepatitis C virus RNA in various handling and storage conditions[A];中國輸血協(xié)會第四屆輸血大會論文集[C];2006年
8 郭德銀;;RNA干擾在病毒研究和控制中的應(yīng)用[A];2006中國微生物學(xué)會第九次全國會員代表大會暨學(xué)術(shù)年會論文摘要集[C];2006年
9 甘儀梅;楊業(yè)華;王學(xué)奎;曹燕;楊特武;;棉花總RNA快速提取[A];中國棉花學(xué)會2007年年會論文匯編[C];2007年
10 ;Identification and characterization of novel interactive partner proteins for PCBP1 that is a RNA-binding protein[A];中國優(yōu)生優(yōu)育協(xié)會第四屆全國學(xué)術(shù)論文報告會暨基因科學(xué)高峰論壇論文專輯[C];2008年
相關(guān)重要報紙文章 前10條
1 記者 馮衛(wèi)東;研究人員發(fā)現(xiàn)可破壞腫瘤抑制基因的小RNA[N];科技日報;2009年
2 記者 儲笑抒 通訊員 盛偉;人體微小RNA有望提前發(fā)出癌癥預(yù)警[N];南京日報;2011年
3 瀘州醫(yī)學(xué)院副教授、科普作家 周志遠;“大頭兒子”與環(huán)狀RNA[N];第一財經(jīng)日報;2014年
4 麥迪信;小分子RNA可能有大作用[N];醫(yī)藥經(jīng)濟報;2003年
5 董映璧;美發(fā)現(xiàn)基因調(diào)控可回應(yīng)“RNA世界”[N];科技日報;2006年
6 張忠霞;特制RNA輕推一下,就能“喚醒”基因[N];新華每日電訊;2007年
7 聶翠蓉;RNA:縱是配角也精彩[N];科技日報;2009年
8 馮衛(wèi)東;RNA干擾機制首次在人體中獲得證實[N];科技日報;2010年
9 馮衛(wèi)東 王小龍;英在地球早期環(huán)境模擬條件下合成類RNA[N];科技日報;2009年
10 記者 常麗君;新技術(shù)讓研究進入單細胞內(nèi)RNA的世界[N];科技日報;2011年
相關(guān)博士學(xué)位論文 前10條
1 王趙瑋;昆蟲RNA病毒復(fù)制及昆蟲抗病毒天然免疫機制研究[D];武漢大學(xué);2014年
2 包純;一類新非編碼RNA的發(fā)現(xiàn)以及產(chǎn)生和功能的初探[D];華中師范大學(xué);2015年
3 李語麗;基于MeRIP-seq的水稻RNA m6A甲基化修飾的研究[D];中國科學(xué)院北京基因組研究所;2015年
4 熊瑜琳;miR-122靶位基因STAT3調(diào)控長鏈非編碼 RNA Lethe促進HCV復(fù)制的機制研究[D];第三軍醫(yī)大學(xué);2015年
5 范春節(jié);高通量測序鑒定毛竹小RNA及其功能分析[D];中國林業(yè)科學(xué)研究院;2012年
6 王加強;小鼠著床前胚胎特異ERV相關(guān)長非編碼RNA的定向篩選及功能研究[D];東北農(nóng)業(yè)大學(xué);2015年
7 王業(yè)偉;非編碼RNA SPIU的結(jié)構(gòu)和功能研究和p19INK4D在APL發(fā)病中的作用[D];上海交通大學(xué);2013年
8 鄒艷芬;子癇前期中非編碼RNA對滋養(yǎng)細胞功能的調(diào)控及機制探索[D];南京醫(yī)科大學(xué);2015年
9 朱喬;miR-10b在人肝細胞肝癌發(fā)生中的作用及其機制的初步探索[D];第四軍醫(yī)大學(xué);2015年
10 蔣俊鋒;長鏈非編碼RNA BACE1-AS促進Aβ聚集及其調(diào)節(jié)BACE1和SERF1a的ceRNA機制研究[D];第二軍醫(yī)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 陸聰兒;條紋斑竹鯊再生肝臟中差異RNA的研究[D];浙江理工大學(xué);2015年
2 張曉輝;小鼠幾種長鏈非編碼RNA基因功能的初步研究[D];昆明理工大學(xué);2015年
3 全弘揚;長鏈非編碼RNA在細胞內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)中的相關(guān)作用及機制研究[D];北京協(xié)和醫(yī)學(xué)院;2015年
4 胡亮;DDX19A識別PRRSV基因組RNA并激活NLRP3炎癥小體[D];中國農(nóng)業(yè)科學(xué)院;2015年
5 張帥兵;應(yīng)用RNA干擾技術(shù)對旋毛蟲Nudix水解酶基因功能的研究[D];鄭州大學(xué);2015年
6 鄭芳芳;肺癌RNA-Seq數(shù)據(jù)中RNA編輯事件的識別算法和系統(tǒng)分析[D];蘇州大學(xué);2015年
7 陳瑞東;長鏈非編碼RNA MEG3在胰腺癌發(fā)生發(fā)展中作用的實驗研究[D];蘇州大學(xué);2015年
8 劉駿武;線蟲和水稻中環(huán)狀RNA的預(yù)測及分析[D];華中農(nóng)業(yè)大學(xué);2015年
9 李猷;利用RNA干擾技術(shù)提高番茄抗TMV侵染能力的研究[D];牡丹江師范學(xué)院;2015年
10 吳術(shù)盛;SVCV感染EPC細胞microRNA表達譜的初步研究[D];華中農(nóng)業(yè)大學(xué);2015年
,本文編號:1944960
本文鏈接:http://sikaile.net/yixuelunwen/jichuyixue/1944960.html