肺部氣道樹(shù)骨架的自動(dòng)提
[Abstract]:The human lung airway tree mainly consists of trachea, main bronchus, lobar and segmental bronchi (about 23 branches), which is an important part of the respiratory system. The structural and functional changes are important causes and manifestations of respiratory diseases. MDCT (Multi-detector computed tomography,MDCT) is an important and noninvasive assessment method for airway diseases. Continuous and (or) overlapping, approximately isotropic, high resolution thin slice (0.75 mm) structural images of the whole lung can be obtained by using MDCT, with one breath hold. However, the massive data obtained by MDCT poses a great challenge to scientific diagnosis and research. It is necessary to use advanced image processing science to realize automatic airway extraction and structural analysis. The purpose of this paper is to propose a method suitable for the structure analysis of pulmonary airway tree, and to realize the automatic extraction, marking and quantitative analysis of the pulmonary airway tree skeleton. In this paper, two models and 26 sets of CT image data (both from Shengjing Hospital, affiliated to China Medical University) are used to verify the algorithm. Firstly, the proposed model is used to verify the topology thinning algorithm, and an improved method of packet connectivity test is proposed. Then, the improved thinning algorithm is applied to the gas tree model of CT image segmentation. Specifically, after morphological processing of the image, the method of topological thinning is used to extract the trachea skeleton of the lung, and the voxel points in the image of the lung trachea are simply judged. The simple points are deleted by using two conditions: Euler number and connectivity. Get the skeleton of the lung airway tree. Based on the skeleton of the pulmonary airway tree, the bifurcation point and leaf node of the skeleton were extracted, and the tree-like structure of the pulmonary airway tree was obtained by connecting the bronchi of different order with different colors. Finally, the length and bifurcation angle of bronchus were measured on the basis of tree structure. The improved topology thinning algorithm can get the correct refinement results for the two models. In addition, 26 sets of data were analyzed experimentally, and the lung airway tree skeleton of all the data was successfully extracted, and 22 groups of tree structure were successfully generated. Among them, there were 14 groups of skeleton without error bifurcation in the tree structure. In this paper, the order of the tree-like structure of the lung airway tree is up to 15, and the number of leaf nodes of the tree is up to 52. Finally, a quantitative analysis of the main bronchus in all data shows that the average length of the left main bronchus is 76.43 mm, and the average length of the right main bronchus is 37.06 mm,. The average angle between the left and right main bronchi is 109.76 degrees. The length and bifurcation angle of the left and right main trachea are consistent with those reported in the literature. The results show that the method proposed in this paper can automatically extract, label and quantify the skeleton of some of the lung airway trees. The preprocessing degree of the lung airway tree is very important to the skeleton extraction. There is no cavity and smooth surface of the lung air channel tree is the basis for the correct extraction of the skeleton. This method is of potential value for the measurement of anatomical structure of airway tree, the recognition of airway topology and the quantitative diagnosis of airway diseases.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:R816.4;R56
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 朱志良,趙新兵;一種新的二值圖像細(xì)化算法[J];中國(guó)體視學(xué)與圖像分析;1998年02期
2 ;[J];;年期
相關(guān)會(huì)議論文 前7條
1 宛根訓(xùn);黃磊;劉迎建;;一種改進(jìn)的并行細(xì)化算法[A];第八屆全國(guó)漢字識(shí)別學(xué)術(shù)會(huì)議論文集[C];2002年
2 張顯全;唐瑩;郭明明;;一種改進(jìn)的指紋快速細(xì)化算法[A];廣西計(jì)算機(jī)學(xué)會(huì)2006年年會(huì)論文集[C];2006年
3 林世毅;蘇廣川;陳東;韓曉廣;;基于二步法的邊緣細(xì)化算法研究[A];第二屆全國(guó)信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2004年
4 朱桂斌;張艷紅;吳樂(lè)華;謝鴻波;;二值圖像的多尺度細(xì)化算法[A];中國(guó)體視學(xué)學(xué)會(huì)圖像分析專(zhuān)業(yè)、中國(guó)體視學(xué)學(xué)會(huì)仿真與虛擬現(xiàn)實(shí)專(zhuān)業(yè)、中國(guó)航空學(xué)會(huì)信號(hào)與信息處理專(zhuān)業(yè)第一屆聯(lián)合學(xué)術(shù)會(huì)議論文集[C];2000年
5 林靜然;彭啟琮;李玉柏;唐小軍;;局部頻譜細(xì)化算法的實(shí)時(shí)效率[A];第九屆全國(guó)青年通信學(xué)術(shù)會(huì)議論文集[C];2004年
6 葉茂;閔春平;李傳光;;基于BP神經(jīng)網(wǎng)絡(luò)圖像的指紋細(xì)化算法[A];第二十六屆中國(guó)控制會(huì)議論文集[C];2007年
7 王燕妮;周明全;武仲科;敖雪峰;戴莉;周曼;;一種改進(jìn)的中國(guó)書(shū)法骨架提取算法[A];圖像圖形技術(shù)與應(yīng)用進(jìn)展——第三屆圖像圖形技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2008年
相關(guān)碩士學(xué)位論文 前10條
1 葉果;人體2.5D細(xì)化算法及其骨架提取研究[D];電子科技大學(xué);2015年
2 趙勁超;肺部氣道樹(shù)骨架的自動(dòng)提取、標(biāo)記和結(jié)構(gòu)分析[D];東北大學(xué);2015年
3 曹玉龍;線劃圖像的細(xì)化算法研究[D];長(zhǎng)安大學(xué);2011年
4 王培龍;有限元網(wǎng)格的生成和細(xì)化算法的設(shè)計(jì)與實(shí)現(xiàn)[D];東北大學(xué);2013年
5 白瑩;手寫(xiě)漢字的細(xì)化算法研究[D];西安電子科技大學(xué);2014年
6 喬明川;三維目標(biāo)的細(xì)化算法研究[D];武漢工程大學(xué);2015年
7 邢鑫;基于快速傅里葉變換頻譜細(xì)化算法的研究[D];湖北工業(yè)大學(xué);2013年
8 熊鵬;漢字筆跡的筆劃提取[D];華中科技大學(xué);2008年
9 唐為方;指紋識(shí)別中若干問(wèn)題的研究[D];山東大學(xué);2005年
10 郭昕;視頻編碼中的反向細(xì)化算法研究[D];上海交通大學(xué);2015年
,本文編號(hào):2443879
本文鏈接:http://sikaile.net/yixuelunwen/huxijib/2443879.html