天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

醫(yī)學(xué)X光圖像感興趣區(qū)域提取

發(fā)布時(shí)間:2018-05-05 05:45

  本文選題:醫(yī)學(xué)X光圖像 + 感興趣區(qū)域。 參考:《西安工業(yè)大學(xué)》2017年碩士論文


【摘要】:隨著計(jì)算機(jī)輔助醫(yī)療技術(shù)的發(fā)展,醫(yī)學(xué)X光圖像分析逐漸成為生物醫(yī)學(xué)領(lǐng)域的研究熱點(diǎn)。椎體部分作為腰椎X光圖像的感興趣區(qū)域,從腰椎圖像中提取椎體的信息對(duì)于腰椎疾病的診斷具有參考價(jià)值。但是受原始X光圖像中存在的對(duì)比度低、邊緣模糊與噪音污染等干擾因素影響,腰椎圖像中椎體信息的分析面臨諸多挑戰(zhàn)。論文針對(duì)腰椎X光圖像中感興趣區(qū)域的提取進(jìn)行研究,從X光圖像特性與醫(yī)學(xué)圖像處理出發(fā),對(duì)圖像處理算法在醫(yī)學(xué)X光圖像處理方面的不足進(jìn)行了深入的分析,提出了以去霧霾算法思想改進(jìn)的反銳化掩膜增強(qiáng)方法、基于相位一致性的綜合邊緣檢測(cè)方法和基于自定義廣度霍夫變換的醫(yī)學(xué)X光圖像感興趣區(qū)域提取方法,實(shí)現(xiàn)了對(duì)腰椎圖像中感興趣區(qū)域的有效提取。論文的主要工作如下:第一,對(duì)X光像的成像原理進(jìn)行了深入的分析。在對(duì)X光圖像充分了解的基礎(chǔ)上對(duì)醫(yī)學(xué)X光圖像進(jìn)行增強(qiáng)處理,對(duì)空間域與頻率域的圖像增強(qiáng)方法進(jìn)行了學(xué)習(xí)實(shí)驗(yàn),對(duì)空間域中的直方圖均衡化,限定對(duì)比度自適應(yīng)直方圖均衡化、平滑濾波、銳化濾波、灰度變換等算法,以及頻率域中的傅里葉變換、高通、低通濾波算法進(jìn)行了研究,在此基礎(chǔ)上根據(jù)霧霾圖像與醫(yī)學(xué)X光圖像擁有的特性,引入了去霧理論的引導(dǎo)圖濾波方法,設(shè)計(jì)實(shí)現(xiàn)了圖像預(yù)處理的框架,良好地保持了圖像邊緣特性。第二,對(duì)圖像的邊緣提取算法進(jìn)行了研究。通過實(shí)驗(yàn)認(rèn)真研究了Sobel算子、Roberts算子、Prewitt算子、Log算子和Canny算子,在此基礎(chǔ)上實(shí)現(xiàn)了基于相位一致性的綜合邊緣檢測(cè)方法,作為自定義廣義霍夫變換的邊緣提取方案。第三,對(duì)感興趣區(qū)域進(jìn)行了判定與劃分。針對(duì)感興趣區(qū)域提取進(jìn)行研究,實(shí)現(xiàn)了自定義廣義霍夫變換對(duì)X光醫(yī)學(xué)圖像感興趣區(qū)域提取,廣義霍夫變換成功的關(guān)鍵在于使用相匹配的邊緣信息進(jìn)行分割。對(duì)大量的X光腰椎圖像進(jìn)行實(shí)驗(yàn),實(shí)現(xiàn)有效的分割。論文將霧霾圖像與醫(yī)學(xué)X光圖像處理技術(shù)相結(jié)合,在對(duì)醫(yī)學(xué)X光圖像進(jìn)行增強(qiáng)的同時(shí),保持了圖像的邊緣細(xì)節(jié)信息。對(duì)提取到的邊緣進(jìn)行區(qū)域生長(zhǎng),能夠顯示出整個(gè)椎體并且最大程度地減少噪聲。自定義腰椎模板可以有效實(shí)現(xiàn)對(duì)腰椎X光圖像的感興趣區(qū)域進(jìn)行粗粒度與細(xì)粒度的提取,為醫(yī)生對(duì)于病情的診斷提供更加可靠的依據(jù)。
[Abstract]:With the development of computer aided medical technology, medical X optical image analysis has gradually become a research hotspot in the field of biomedicine. The vertebral part is a region of interest in the X light image of the lumbar spine. The information extracted from the lumbar image is of reference value for the diagnosis of lumbar disease. But the contrast of the original X light image is low. The analysis of the vertebral information in the lumbar image faces many challenges. The thesis focuses on the extraction of the region of interest in the X light image of the lumbar spine. From the characteristics of the X optical image and the medical image processing, the deficiency of the image processing algorithm in the medical X optical image processing is deeply studied. In this paper, an improved method of anti sharpening mask enhancement based on the idea of haze removal is proposed. A comprehensive edge detection method based on phase consistency and an area of interest region extraction based on medical X optical image based on the custom breadth Hof transform are used to achieve the effective extraction of the region of interest in the lumbar image. The main work of this paper is as follows: First, the imaging principle of X optical image is deeply analyzed. Based on the full understanding of the X optical image, the medical X optical image is enhanced and the image enhancement method in the space domain and frequency domain is studied. The histogram equalization in the spatial domain is balanced, the adaptive histogram equalization, smoothing filtering and sharpening are limited. Filtering, gray transformation and other algorithms, as well as Fourier transform, high pass and low pass filtering algorithms in frequency domain are studied. Based on the characteristics of haze images and medical X optical images, a bootstrap filter method of fog theory is introduced. The frame of image preprocessing is designed and realized, and the edge characteristics of the image are kept well. Second, the edge extraction algorithm of image is studied. Through the experiment, Sobel operator, Roberts operator, Prewitt operator, Log operator and Canny operator are carefully studied. On this basis, a comprehensive edge detection method based on phase consistency is implemented as the edge extraction scheme of the custom generalized Hof transform. Third, region of interest to the region of interest. According to the study of the region of interest extraction, a custom generalized Hof transform (user-defined generalized Hof transform) is used to extract the region of interest in the medical image. The key to the success of the generalized Hof transform is to use the matched edge information to divide the image. Experiments on a large number of X optical lumbar images are carried out to achieve effective segmentation. The haze image is combined with the medical X optical image processing technology to enhance the image edge details while enhancing the medical X light image. The region grows on the extracted edge, can display the whole vertebral body and reduce the noise to the maximum extent. The custom lumbar template can effectively realize the feeling of the X light image of the lumbar spine. The interesting area is coarse grained and fine-grained extraction, which provides a more reliable basis for doctors to diagnose the disease.

【學(xué)位授予單位】:西安工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R814;TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王俊瑋;鄧久強(qiáng);;基于Matlab工具的醫(yī)學(xué)圖像混合空間增強(qiáng)算法研究[J];通訊世界;2016年18期

2 陳勝;張茗屋;;胸部解剖結(jié)構(gòu)回歸模型的虛擬雙能量X線減影方法[J];中國(guó)圖象圖形學(xué)報(bào);2016年09期

3 苗錫奎;胡啟立;趙威;張恒偉;;一種新的圖像邊緣檢測(cè)算法研究[J];光電子技術(shù);2016年01期

4 王茜;朱江兵;柯鑫;;基于區(qū)域分割的光學(xué)相干斷層圖像膜層提取和初步疾病診斷[J];科學(xué)技術(shù)與工程;2015年36期

5 溫銳;陳宏文;張雷;盧振泰;;基于引導(dǎo)濾波的多圖譜醫(yī)學(xué)圖像分割[J];南方醫(yī)科大學(xué)學(xué)報(bào);2015年09期

6 戴橙;陳勝;;改進(jìn)的分水嶺算法用于X光醫(yī)學(xué)圖像分割[J];電子科技;2015年06期

7 王彥;吳俊敏;鄭煥鑫;;廣義霍夫變換在多目標(biāo)檢測(cè)領(lǐng)域的應(yīng)用及優(yōu)化[J];計(jì)算機(jī)工程與應(yīng)用;2016年17期

8 張雪松;;基于廣義霍夫變換的室外場(chǎng)景行人檢測(cè)研究[J];計(jì)算機(jī)與現(xiàn)代化;2015年04期

9 徐珊;劉白林;;一種醫(yī)學(xué)X光圖像的混合空間增強(qiáng)算法[J];計(jì)算機(jī)與數(shù)字工程;2014年12期

10 陳汗青;萬艷玲;王國(guó)剛;;數(shù)字圖像處理技術(shù)研究進(jìn)展[J];工業(yè)控制計(jì)算機(jī);2013年01期

相關(guān)博士學(xué)位論文 前3條

1 楊璐;手指靜脈識(shí)別方法研究[D];山東大學(xué);2016年

2 陳再良;圖像感興趣區(qū)域提取方法研究[D];中南大學(xué);2012年

3 張鵬;圖像信息處理中的選擇性注意機(jī)制研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2004年

相關(guān)碩士學(xué)位論文 前9條

1 武海濤;肝臟CT圖像病變檢測(cè)與識(shí)別應(yīng)用研究[D];浙江大學(xué);2016年

2 徐珊;多尺度和直方圖均衡的X光圖像增強(qiáng)算法研究[D];西安工業(yè)大學(xué);2015年

3 周崢;圖像增強(qiáng)算法及應(yīng)用研究[D];北京工業(yè)大學(xué);2012年

4 王寧;血管造影圖像增強(qiáng)算法研究[D];南方醫(yī)科大學(xué);2012年

5 楊阿麗;肺部CT圖像感興趣區(qū)域提取方法研究[D];北京理工大學(xué);2011年

6 朱磊;Retinex圖像增強(qiáng)算法的研究與FPGA實(shí)現(xiàn)[D];清華大學(xué);2012年

7 閻成棟;基于粗糙集的醫(yī)學(xué)圖像增強(qiáng)系統(tǒng)研究[D];太原理工大學(xué);2010年

8 張淑驊;基于MATLAB的X光圖像處理方法[D];華東師范大學(xué);2005年

9 高彥平;圖像增強(qiáng)方法的研究與實(shí)現(xiàn)[D];山東科技大學(xué);2005年

,

本文編號(hào):1846498

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/fangshe/1846498.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶aec5f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com