基于OVH描述子的IMRT放療計(jì)劃?rùn)z索技術(shù)研究
本文選題:調(diào)強(qiáng)放射治療計(jì)劃 + 相似病例檢索��;參考:《南京航空航天大學(xué)》2017年碩士論文
【摘要】:調(diào)強(qiáng)放射治療(Intensity-modulated radiation therapy,IMRT)作為一種精確的放射治療技術(shù),已經(jīng)成為目前臨床上廣泛應(yīng)用的放療技術(shù)之一。計(jì)劃設(shè)計(jì)是IMRT技術(shù)的重要環(huán)節(jié),其目標(biāo)是尋找靶區(qū)高劑量覆蓋與正常組織低劑量之間的最佳折中。目前IMRT計(jì)劃設(shè)計(jì)仍然是一個(gè)反復(fù)試誤且其質(zhì)量依賴(lài)于物理師經(jīng)驗(yàn)的過(guò)程,由于該過(guò)程涉及的參數(shù)較多,導(dǎo)致計(jì)劃設(shè)計(jì)耗時(shí)較嚴(yán)重、難以保證計(jì)劃的高質(zhì)量。因此,在保證計(jì)劃質(zhì)量的同時(shí),如何提高IMRT計(jì)劃制定效率成為目前放療研究的熱點(diǎn)之一。最近的研究表明,基于先驗(yàn)知識(shí)放療計(jì)劃設(shè)計(jì)可有效保證IMRT計(jì)劃的高質(zhì)量、提高放療計(jì)劃的效率。本文針對(duì)基于OVH描述子的IMRT放療計(jì)劃?rùn)z索技術(shù)進(jìn)行了深入的研究。首先,詳細(xì)介紹了臨床應(yīng)用中IMRT計(jì)劃設(shè)計(jì)的步驟及IMRT計(jì)劃?rùn)z索技術(shù);其次,深入研究重疊體積直方圖(Overlap Volume Histogram,OVH)描述子的幾何關(guān)系描述能力,提出基于形態(tài)學(xué)的OVH描述子計(jì)算方法,有效準(zhǔn)確地計(jì)算OVH描述子;然后,提出基于互補(bǔ)OVH描述子的改進(jìn)型相似病例檢索方法,該方法能夠檢索出形狀相似度更高的病例;最后,提出基于K-均值的放療知識(shí)庫(kù)聚類(lèi)方法,使同種類(lèi)別中的病例具有較大的相似度,通過(guò)計(jì)算待檢索病例的所屬類(lèi)別進(jìn)行類(lèi)內(nèi)檢索,從而提高相似病例的檢索效率。為驗(yàn)證所提出方法的可靠性和實(shí)用性,本文利用臨床鼻咽癌病例和前列腺癌病例,詳細(xì)分析了基于OVH描述子的IMRT計(jì)劃?rùn)z索方法的檢索性能和質(zhì)量控制性能。實(shí)驗(yàn)結(jié)果表明:1)OVH描述子能夠有效地描述靶區(qū)和各危及器官間的空間位置關(guān)系,且能夠檢索到相似度較高的病例;2)利用相似病例的計(jì)劃設(shè)計(jì)參數(shù)對(duì)新病例進(jìn)行再優(yōu)化,在不改變靶區(qū)劑量覆蓋率的情況下,降低了危及器官的劑量,得到的放療計(jì)劃可以與資深物理師經(jīng)反復(fù)優(yōu)化得到的放療計(jì)劃相媲美,實(shí)現(xiàn)了對(duì)放療計(jì)劃質(zhì)量的控制;3)用相似病例指導(dǎo)計(jì)劃設(shè)計(jì),避免了計(jì)劃優(yōu)化的反復(fù)試誤過(guò)程,為提高計(jì)劃設(shè)計(jì)效率奠定基礎(chǔ)。
[Abstract]:Intensity-modulated radiation therapy (IMRT), as a precise radiotherapy technique, has become one of the widely used radiotherapy techniques in clinic.Planning design is an important part of IMRT technology, whose goal is to find the best compromise between high dose coverage of target area and low dose of normal tissue.At present, the design of IMRT plan is still a process of repeated trial and error and its quality depends on the experience of the physicist. Due to the large number of parameters involved in the process, the planning design is time-consuming and difficult to guarantee the high quality of the plan.Therefore, how to improve the efficiency of IMRT planning becomes one of the hotspots in radiotherapy research.Recent studies have shown that the design of radiotherapy plan based on prior knowledge can effectively guarantee the high quality of IMRT plan and improve the efficiency of radiotherapy plan.In this paper, IMRT radiotherapy plan retrieval technology based on OVH descriptor is studied.Firstly, the steps of IMRT plan design and IMRT plan retrieval technology in clinical application are introduced in detail. Secondly, the geometric relation description ability of overlapped Volume histogram descriptor is studied in depth, and the method of calculating OVH descriptor based on morphology is proposed.Then, an improved similar case retrieval method based on complementary OVH descriptor is proposed, which can retrieve cases with higher shape similarity.In this paper, a method based on K-means is proposed to cluster the knowledge base of radiotherapy, which makes the cases in the same category have greater similarity. The retrieval efficiency of similar cases can be improved by calculating the category of the case to be retrieved.In order to verify the reliability and practicability of the proposed method, the retrieval performance and quality control performance of IMRT plan retrieval method based on OVH descriptor were analyzed in detail by using clinical cases of nasopharyngeal carcinoma and prostate cancer.The experimental results show that the 1: 1 OVH descriptor can effectively describe the spatial position relationship between the target area and the organs at risk, and can retrieve the case with high similarity.) the new case can be reoptimized by using the planning design parameters of the similar case.Without changing the dose coverage of the target area, the dose at risk to the organ was reduced, and the resulting radiotherapy plan was comparable to that obtained by repeated optimization by a senior physicist.It realizes the quality control of radiotherapy plan and uses similar cases to guide the plan design, avoids the repeated trial and error process of the plan optimization, and lays the foundation for improving the efficiency of the plan design.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:R730.55;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李志偉;;機(jī)器學(xué)習(xí)發(fā)展及幾種學(xué)習(xí)方式[J];產(chǎn)業(yè)與科技論壇;2016年10期
2 陳萬(wàn)青;鄭榮壽;張思維;曾紅梅;左婷婷;賈漫漫;夏昌發(fā);鄒小農(nóng);赫捷;;2012年中國(guó)惡性腫瘤發(fā)病和死亡分析[J];中國(guó)腫瘤;2016年01期
3 陳軼;;機(jī)器學(xué)習(xí)技術(shù)在醫(yī)療數(shù)據(jù)挖掘中的應(yīng)用[J];電子測(cè)試;2015年03期
4 陳萬(wàn)青;鄭榮壽;曾紅梅;鄒小農(nóng);張思維;赫捷;;2011年中國(guó)惡性腫瘤發(fā)病和死亡分析[J];中國(guó)腫瘤;2015年01期
5 石國(guó)勇;楊曉;李巖;;機(jī)器學(xué)習(xí)算法在綠色智能化汽車(chē)發(fā)展及研究中的應(yīng)用展望[J];科技創(chuàng)新導(dǎo)報(bào);2014年04期
6 趙平;;中國(guó)癌癥流行態(tài)勢(shì)與對(duì)策[J];醫(yī)學(xué)研究雜志;2013年10期
7 秦亮;張文廣;史賢俊;肖支才;;基于免疫克隆算法的多目標(biāo)聚類(lèi)方法[J];信息與控制;2013年01期
8 陳萬(wàn)青;張思維;鄭榮壽;曾紅梅;鄒小農(nóng);趙平;吳良有;李光琳;赫捷;;中國(guó)2009年惡性腫瘤發(fā)病和死亡分析[J];中國(guó)腫瘤;2013年01期
9 謝娟英;郭文娟;謝維信;高新波;;基于樣本空間分布密度的初始聚類(lèi)中心優(yōu)化K-均值算法[J];計(jì)算機(jī)應(yīng)用研究;2012年03期
10 鄭榮壽;張思維;吳良有;李光琳;趙平;赫捷;陳萬(wàn)青;;中國(guó)腫瘤登記地區(qū)2008年惡性腫瘤發(fā)病和死亡分析[J];中國(guó)腫瘤;2012年01期
相關(guān)碩士學(xué)位論文 前1條
1 李宇泊;K均值算法初始聚類(lèi)中心選取相關(guān)問(wèn)題研究[D];蘭州交通大學(xué);2012年
,本文編號(hào):1730943
本文鏈接:http://sikaile.net/yixuelunwen/fangshe/1730943.html