ZAR1和GDF9基因的克隆及其在新西蘭白兔的差異表達(dá)研究
[Abstract]:Maternal effect gene (MEG) is usually identified only in ovarian tissue and oocyte, and is now proved to be in the transition process of the parent type transition (maternal zygotic transition, MZT), that is, the transformation of the parent type to the zygotic type, as well as the early development of the mammalian embryo and the follicle. It plays an important role in the process of development. The zygote block factor 1 (zygote arrest 1, ZAR1) and growth differentiation factor 9 (growth differentiation factor 9, GDF9) are one of the few maternal effects genes that have been excavated earlier. In mice, rats, frogs, zebrafish, cattle, sheep, pigs, and other species have been reported that.ZAR1 is not only in oocyte. The GDF9 gene, as a member of the TGF- beta superfamily, has been proved to be the Qg source factor of the mammalian ovary, in the follicular and oocyte, as a member of the TGF- beta superfamily, and is proved to play an important role in the early stages of growth and embryonic development. In the process of maturation, it plays an important regulatory role, and because of its important role in the reproductive process, it has become a hot spot in the research of animal reproductive biology. At present, the research on these two genes in rabbits is still very few, and the understanding of its mechanism is not deep. This study is based on the previous work in the laboratory. The rabbits cloned the ZAR1 and GDF9 genes and analyzed the related bioinformatics. In order to detect the difference in the expression of different tissues between the high and low yield New Zealand white rabbits, ZAR1 and GDF9 were detected by real-time fluorescence quantitative PCR, and the two genes were detected in the heart, liver, spleen, lung, kidney, ovary and uterus, respectively. The mechanism of action and tissue expression in New Zealand white rabbits were explained from the transcriptional expression level of ZAR1 and GDF9 genes. The following experimental results were obtained through the above methods: 1, specific primers were designed according to the ZAR1m RNA and genome sequence published on NCBI, and the ZAR1 gene was amplified from New Zealand white rabbit kidney by 1-2. Exon sequence, cross 2-4 exon sequence, exon 4 and 3 'flanking sequence, 141357 and 338bp respectively. After splicing and integration, 709bp. based on the published GDF9m RNA and genome sequence on NCBI, designed specific primers, and amplified the 5' side wing and exon 1 sequence from the New Zealand white rabbit liver, and the partial sequence of exon 2. 796bp and 614bp.2, using bioinformatics related software to analyze the homology of New Zealand white rabbit ZAR1 nucleotide sequence and other species. The results showed that the consistency of C DNA sequence of ZAR1 gene was 100%, 91%, 88%, 88% and 87% respectively, and the consistency with mice and rats was 86%, 87%, respectively. The consistency between the zebrafish and the Xenopus Xenopus was 76%, respectively. 82%. compared the amino acid sequence translated by the ZAR1c DNA sequence in the Gen Bank database, and found that the consistency of the ZAR1 amino acid sequences of the published rabbits, people, mice and rats were 100%, 84%, 93%, 94% respectively, and the consistency with the cattle and pigs were 97%, and the consistency with zebrafish was 89%, and that of the zebrafish was 89%. The conformance of Xenopus laevis was 96%.3, and the nucleotide homology of New Zealand white rabbit GDF9 gene and other species was analyzed by bioinformatics software. The results showed that the consistency of C DNA sequence of GDF9 gene was 99%, 79%, 79%, 77%, 76% and 75%, respectively, and 72% in mice and rats. The conformance of zebrafish was 68%. The homology of the amino acid sequence translated from the GDF9c DNA sequence was compared with the African Xenopus 73%., and the homology of the GDF9 amino acid to the corresponding sequence of the published rabbit, human, monkey, mouse, rat, and pig was 97%, 71%, 72%, 66%, 65%, 69%, respectively, and was 68% with the cattle and sheep. The conformance of zebrafish was 43%. The expression of ZAR1 and GDF9 genes in the heart, liver, spleen, lungs, kidneys, ovary and uterus were studied with 49%.4 and semi quantitative RT-PCR. The results showed that there were m RNA expressions of ZAR1 and GDF9 genes in the above-mentioned tissues, indicating that ZAR1 and GDF9 m RNA are in New Zealand. The white rabbit is widely expressed and does not have ovarian specific.5. In high and low yield New Zealand white rabbits, the ZAR1 gene expresses the highest content in the lung tissue, the expression of the spleen and kidney and the lowest expression in the heart tissue, while the GDF9 gene is the highest in the ovarian and liver tissues, but in the heart and spleen. The difference in the expression of the lowest.6 and the same tissue in the high and low yield groups showed that the relative expression of the ZAR1 gene was significantly different in the liver, the kidneys and the ovary (P0.01), the heart and the uterus (P0.05), and there was no significant difference in the spleen and lungs (P0.05), while the GDF9 gene was stored in the liver and uterus (P0.01), the heart, spleen, and ovarian tissue (P0.05). In the significant difference, in the lungs and kidneys, there was no significant difference in expression (P0.05).7, the GDF9 and ZAR1 genes were high, and the relative expression of the low yield New Zealand white rabbits showed that the relative expression of GDF9 gene in the heart, liver, kidney, ovary and uterus was significantly higher than that of the ZAR1 gene.
【學(xué)位授予單位】:河南農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:S829.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳雪;袁金鐸;趙楠楠;楊桂文;安利國(guó);;渦蟲的基因沉默作用[J];生物技術(shù)通報(bào);2013年03期
2 孫國(guó)鳳;導(dǎo)入耐過(guò)氧化氫蘭草基因促進(jìn)植物生長(zhǎng)[J];生物技術(shù)通報(bào);1999年05期
3 葉愛(ài)華,吳延軍,楊莉;基因沉默及其克服策略[J];中國(guó)農(nóng)學(xué)通報(bào);2003年01期
4 佟玲;侯杰;崔國(guó)新;許志茹;李玉花;;基因沉默在農(nóng)業(yè)生產(chǎn)中的應(yīng)用及其相關(guān)因子的研究進(jìn)展[J];植物生理學(xué)報(bào);2011年07期
5 李飛;吳益東;韓召軍;;害蟲的基因沉默控制[J];昆蟲知識(shí);2010年05期
6 萬(wàn)小榮;莫愛(ài)瓊;楊妙賢;余土元;;植物基因沉默機(jī)制研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2011年17期
7 丁錦平;;棉花病毒誘導(dǎo)基因沉默體系構(gòu)建[J];江蘇農(nóng)業(yè)科學(xué);2013年06期
8 劉忠慧;儲(chǔ)明星;陳國(guó)宏;;促性腺激素釋放激素基因及其受體基因的研究進(jìn)展[J];中國(guó)畜牧獸醫(yī);2006年03期
9 趙先海;黃浩;鄧小梅;袁金英;湛欣;;對(duì)一種多基因組裝方法的改進(jìn)[J];中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào);2014年03期
10 李成,張濱麗,李杰;RNAi技術(shù)的研究進(jìn)展和發(fā)展前景[J];東北農(nóng)業(yè)大學(xué)學(xué)報(bào);2005年03期
相關(guān)會(huì)議論文 前10條
1 袁誠(chéng);李萃;馬金;韓成貴;于嘉林;Andrew Jackson;李大偉;;大麥條紋花葉病毒誘導(dǎo)的基因沉默載體系統(tǒng)的改造及其應(yīng)用[A];中國(guó)植物病理學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集[C];2009年
2 陳翔;;RNAi:從科學(xué)家的剪九到醫(yī)師的治療手段[A];中華醫(yī)學(xué)會(huì)第十二次全國(guó)皮膚性病學(xué)術(shù)會(huì)議論文集[C];2006年
3 王海光;李自超;;植物干旱脅迫應(yīng)答基因及其產(chǎn)物研究進(jìn)展[A];2003年全國(guó)作物遺傳育種學(xué)術(shù)研討會(huì)論文集[C];2003年
4 施定基;張文俊;鄧元告;冉亮;康瑞娟;趙興貴;張?jiān)侥?;藻類基因工程的一些進(jìn)展[A];中國(guó)海洋生化學(xué)術(shù)會(huì)議論文薈萃集[C];2005年
5 陳愛(ài)葵;李梅紅;;RNAi—基因沉默[A];遺傳學(xué)進(jìn)步與人口健康高峰論壇論文集[C];2007年
6 項(xiàng)曉瓊;;RNAi技術(shù)在毒理學(xué)中的應(yīng)用[A];中國(guó)藥理學(xué)會(huì)毒理專業(yè)委員會(huì)第十次學(xué)術(shù)會(huì)議論文摘要匯編[C];2004年
7 劉家云;郝曉柯;李慶霞;馬龍洋;溫偉紅;賈林濤;楊安鋼;;靶向X區(qū)的siRNA抑制HBV基因的表達(dá)和復(fù)制[A];第九屆西北五省(區(qū))檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2005年
8 焦鋒;樓程富;;基因在植物多倍體中的進(jìn)化研究進(jìn)展[A];中國(guó)蠶學(xué)會(huì)第三屆青年學(xué)術(shù)研討會(huì)暨浙江省第二屆青年學(xué)術(shù)論壇——蠶桑分論壇論文集(上冊(cè))[C];2001年
9 吳麗娟;陳偉;康格非;蔣建新;朱佩芳;;鋅指蛋白A20基因沉默載體研究與初步應(yīng)用[A];第五次全國(guó)中青年檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2006年
10 徐新云;毛侃瑯;毛吉炎;;CYP3A4基因沉默和高表達(dá)對(duì)三氯乙烯致肝細(xì)胞毒性的影響[A];中國(guó)毒理學(xué)會(huì)第六屆全國(guó)毒理學(xué)大會(huì)論文摘要[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 Esha Dey Pallavi Ail 編譯 碩軍;“基因沉默”先導(dǎo)者[N];醫(yī)藥經(jīng)濟(jì)報(bào);2013年
2 南方日?qǐng)?bào)記者 張勝波 林亞茗 通訊員 粵科宣;“廣東是成果產(chǎn)業(yè)化好地方”[N];南方日?qǐng)?bào);2011年
3 記者 李荔;朱冰:環(huán)境也可以改變基因[N];北京科技報(bào);2012年
4 記者 毛黎;科學(xué)家成功解開大量基因沉默之謎[N];科技日?qǐng)?bào);2008年
5 醫(yī)學(xué)博士 科學(xué)松鼠會(huì)成員 致樺;美麗的干擾[N];中國(guó)經(jīng)營(yíng)報(bào);2010年
6 紀(jì)光偉;2006,最出彩的是基因[N];健康報(bào);2006年
7 張?zhí)锟?基因編輯器被寄予厚望[N];中國(guó)醫(yī)藥報(bào);2014年
8 張?zhí)锟?垃圾DNA并非垃圾[N];文匯報(bào);2012年
9 記者 許琦敏;基因“梁祝悲劇”誘發(fā)血癌[N];文匯報(bào);2007年
10 聶翠蓉編譯;RNAi:生物技術(shù)的藍(lán)月亮[N];科技日?qǐng)?bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 張興坦;煙草MAPK基因的功能研究[D];重慶大學(xué);2015年
2 Chabungbam Orville Singh(奧維爾);家蠶BmPLA2和BmRab3基因的分子克隆、表達(dá)和功能研究[D];浙江大學(xué);2014年
3 張凌娣;同源序列高劑量異常表達(dá)及病毒編碼蛋白對(duì)基因沉默的作用[D];中國(guó)農(nóng)業(yè)大學(xué);2004年
4 袁佐清;東亞三角渦蟲DjPreb和DjStag基因表達(dá)與功能分析[D];中國(guó)海洋大學(xué);2010年
5 邱慶明;若干生精細(xì)胞相關(guān)基因功能初步研究[D];中南大學(xué);2009年
6 陳婷;果蠅中染色體乙酰化與去乙;揎椉捌渑c熱休克基因表達(dá)的關(guān)系[D];東北師范大學(xué);2002年
7 申彥森;基于內(nèi)含子剪切的人工miRNA結(jié)構(gòu)和靶向位點(diǎn)與基因沉默效率的關(guān)系研究[D];武漢大學(xué);2009年
8 姜國(guó)勇;番茄Tm-2~2基因在煙草中的表達(dá)及其編碼蛋白特異氨基酸決定對(duì)病毒的抗性[D];福建農(nóng)林大學(xué);2003年
9 劉春艷;組蛋白乙酰轉(zhuǎn)移酶CBP/p300對(duì)人白細(xì)胞介素-5基因表達(dá)調(diào)控的影響及其分子機(jī)制研究[D];東北師范大學(xué);2004年
10 麻鵬達(dá);基因沉默抑制子P1/HC-Pro和P25在瞬時(shí)體系中的作用[D];東北師范大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 孔令廣;反向重復(fù)結(jié)構(gòu)不同位置側(cè)翼序列誘導(dǎo)的基因沉默差異比較[D];山東農(nóng)業(yè)大學(xué);2009年
2 鄭璐平;番茄抗葉霉菌相關(guān)基因的鑒定及TRV 16K基因的功能分析[D];福建農(nóng)林大學(xué);2007年
3 耿文君;東亞三角渦蟲DjSparc-like基因的進(jìn)化、表達(dá)以及功能分析[D];山東理工大學(xué);2009年
4 成磊;miRNA介導(dǎo)靶基因沉默的分析與識(shí)別[D];南京航空航天大學(xué);2011年
5 李志清;家蠶BmMet基因的鑒定、克隆及功能分析[D];西南大學(xué);2009年
6 鞏校東;比較分析大腸桿菌K-12中的必要基因與非必要基因[D];西北農(nóng)林科技大學(xué);2007年
7 施偉;基于黃瓜花葉病毒的基因沉默載體優(yōu)化[D];浙江理工大學(xué);2012年
8 聶敏;東亞三角渦蟲DjRhoA基因的表達(dá)及功能分析[D];山東理工大學(xué);2011年
9 彭麗娜;家蠶BmDichaete基因的克隆及功能初探[D];西南大學(xué);2012年
10 呂坤;棉花病毒誘導(dǎo)的基因沉默體系的建立及其在棉花抗黃萎病中的應(yīng)用[D];南京農(nóng)業(yè)大學(xué);2013年
,本文編號(hào):2133805
本文鏈接:http://sikaile.net/yixuelunwen/dongwuyixue/2133805.html