基于遙感的巴音布魯克高寒草原蒸散發(fā)量模擬
本文選題:MODIS + 實際蒸散發(fā); 參考:《新疆大學(xué)》2017年碩士論文
【摘要】:利用MODIS數(shù)據(jù)的地表溫度、歸一化植被指數(shù)和地表反照率等參數(shù),結(jié)合氣象站的觀測和DEM數(shù)據(jù),基于SEBAL模型模擬了巴音布魯克高寒草原2000年、2007年和2014年植被生長季,共21天的日尺度地表實際蒸散發(fā)量。利用FAO P-M公式對模擬結(jié)果進(jìn)行了地面驗證,并運用變異系數(shù)法和相關(guān)分析法討論了蒸散發(fā)的空間格局、時間變化特征、空間格局異質(zhì)性和相關(guān)性。結(jié)果表明:1.SEBAL模擬值和FAO P-M公式計算值的R2為0.7047,均方根誤差為0.3676;不同生長階段的平均相對誤差依次為:生長后期凍結(jié)期生長前期生長期。2.空間格局上,全區(qū)蒸散發(fā)有明顯的高、低值中心。受土壤濕度和植被覆蓋的影響,高值區(qū)主要在大、小尤路都斯盆地和低山帶。而低值區(qū)在焉耆盆地和山脈的高海拔帶;同時,受人工種植和灌溉的影響,焉耆綠洲內(nèi)有零星的高值點。3.(1)時間序列上,區(qū)域蒸散發(fā)水平2000年2007年2014年;同時,蒸散發(fā)呈季節(jié)性波動,波動幅度依次為:2000年2007年2014年。(2)季節(jié)變化上,三年間全區(qū)蒸散發(fā)平均值最高的時間均為7月12日,即夏季蒸散發(fā)水平最高。而平均值最低的時間為9月14日或10月16日,即秋季蒸散發(fā)水平最低;同時,全區(qū)蒸散發(fā)標(biāo)準(zhǔn)差最高的日期均為7月12日,即夏季蒸散發(fā)離散程度最高。而標(biāo)準(zhǔn)差最低的日期在9月14日或10月16日,即秋季蒸散發(fā)離散程度最低。(3)從生長季的角度看,蒸散發(fā)在凍結(jié)期較低,進(jìn)入生長前期迅速升高,生長期最大,生長后期急劇下降。4.空間異質(zhì)性方面,全區(qū)蒸散發(fā)以高波動變化為主,不同變異程度的面積比例:高波動變化無法確定相對較高的波動變化中等波動變化相對較低的波動變化低波動變化;同時,高波動變化區(qū)主要在大、小尤路都斯盆地,是天然植被季節(jié)性盛衰所致。焉耆綠洲的高波動變化與農(nóng)作物不同物候期迥異的葉面積狀況和耕地土壤濕度有關(guān)。5.空間相關(guān)性方面,蒸散發(fā)與地表溫度為負(fù)線性相關(guān),不同生長階段的相關(guān)水平:生長后期生長期生長前期凍結(jié)期;在凍結(jié)期、生長前期和生長后期,蒸散發(fā)與NDVI為負(fù)線性相關(guān),相關(guān)水平:生長后期生長前期凍結(jié)期,而在生長期,蒸散發(fā)與NDVI為正線性相關(guān);蒸散發(fā)與地表反照率為正線性相關(guān),相關(guān)水平為:凍結(jié)期生長后期生長前期生長期。
[Abstract]:Using the parameters of MODIS data, such as surface temperature, normalized vegetation index and surface albedo, combined with meteorological station observation and Dem data, the vegetation growing seasons of Bayinbrook alpine grassland in 2000, 2007 and 2014 were simulated based on SEBAL model. A total of 21 days of actual surface evapotranspiration on a daily scale. The simulation results were verified by FAO P-M formula, and the spatial pattern, temporal variation characteristics, spatial pattern heterogeneity and correlation of evapotranspiration were discussed by coefficient of variation method and correlation analysis. The results showed that the R2 of the simulated value of SEBAL and the calculated value of FAO P-M formula was 0.7047, the root mean square error was 0.3676, and the average relative error of different growth stages was as follows: the growth period of the early growth stage of the late growth stage was frozen period. In the spatial pattern, the evapotranspiration of the whole area has obvious high and low value centers. Under the influence of soil moisture and vegetation cover, the high value areas are mainly in the large, small Luduz basin and low mountain zone. However, the low value area is in the high elevation zone of Yanqi basin and mountain range, at the same time, affected by artificial planting and irrigation, there are sporadic high value points. (1) in the time series, the regional evapotranspiration level is 2000 and 2014; at the same time, The seasonal fluctuation of evapotranspiration is as follows: 2000, 2007 and 2014. (2) in the seasonal variation, the mean time of the regional evapotranspiration is the highest in July 12, that is, the highest level of the summer evapotranspiration. The lowest mean time is September 14 or October 16, that is, autumn evapotranspiration level is the lowest, and the highest standard deviation of evapotranspiration in the whole region is July 12, that is, summer evapotranspiration dispersion is the highest. However, the lowest standard deviation date is September 14 or October 16, that is, autumn evapotranspiration dispersion is the lowest. (3) from the point of view of growing season, evapotranspiration is low in freezing period, rising rapidly in early growth period, and maximum in growth period. At the late stage of growth, there was a sharp decline. In terms of spatial heterogeneity, the evapotranspiration of the whole region is dominated by high fluctuation, and the area ratio of different variation degree: the high fluctuation change can not determine the relatively high fluctuation change, the middle fluctuation change is relatively low fluctuation change, the low fluctuation change, at the same time, The high fluctuation area is mainly in the large and small Luduz basin, which is caused by the seasonal rise and fall of natural vegetation. The variation of high fluctuation in Yanqi oasis is related to the different leaf area of different phenological periods of crops and the soil moisture of cultivated land. In terms of spatial correlation, there was a negative linear correlation between evapotranspiration and surface temperature. The correlation levels of different growth stages were as follows: freezing period in early growth stage, and negative linear correlation between evapotranspiration and NDVI in freezing period, early growth period and late growth period. Correlation level: at the early growth stage, the evapotranspiration was positively linearly correlated with NDVI, and there was a positive linear correlation between the evapotranspiration and the surface albedo.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S812
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧興耀;姚俊強;劉志輝;;基于GIMMS NDVI的中亞干旱區(qū)植被覆蓋時空變化[J];干旱區(qū)研究;2017年01期
2 鄧興耀;劉洋;劉志輝;姚俊強;;中國西北干旱區(qū)蒸散發(fā)時空動態(tài)特征[J];生態(tài)學(xué)報;2017年09期
3 劉洋;李誠志;劉志輝;鄧興耀;朱金煥;;基于WRF模式的新疆巴音布魯克盆地強降雨天氣數(shù)值模擬效果分析[J];干旱區(qū)研究;2016年01期
4 郭淑海;楊國靖;李清峰;趙傳成;;新疆阿克蘇河上游高寒草甸蒸散發(fā)觀測與估算[J];冰川凍土;2015年01期
5 吳雪嬌;周劍;李妍;潘曉多;周彥召;;基于渦動相關(guān)儀驗證的SEBS模型對黑河中游地表蒸散發(fā)的估算研究[J];冰川凍土;2014年06期
6 周彥昭;周劍;李妍;王旭峰;;利用SEBAL和改進(jìn)的SEBAL模型估算黑河中游戈壁、綠洲的蒸散發(fā)[J];冰川凍土;2014年06期
7 買托合提·阿那依提;玉素甫江·如素力;麥麥提吐爾遜·艾則孜;迪力夏提·司馬義;;新疆開都河流域主要地貌形態(tài)特征研究[J];冰川凍土;2014年05期
8 陳仁升;陽勇;韓春壇;劉俊峰;康爾泗;宋耀選;劉章文;;高寒區(qū)典型下墊面水文功能小流域觀測試驗研究[J];地球科學(xué)進(jìn)展;2014年04期
9 陽勇;陳仁升;宋耀選;劉俊峰;韓春壇;劉章文;;黑河上游山區(qū)草地蒸散發(fā)觀測與估算[J];應(yīng)用生態(tài)學(xué)報;2013年04期
10 李紅琴;李英年;張法偉;劉曉琴;吳啟華;毛紹娟;;高寒草甸植被生產(chǎn)量年際變化及水分利用率狀況[J];冰川凍土;2013年02期
相關(guān)博士學(xué)位論文 前1條
1 韓惠;基于遙感技術(shù)的祖厲河流域土地利用/土地覆蓋變化與蒸散發(fā)研究[D];蘭州大學(xué);2006年
相關(guān)碩士學(xué)位論文 前1條
1 陳玲;基于改進(jìn)的SEBAL模型估算區(qū)域蒸散發(fā)[D];蘭州大學(xué);2007年
,本文編號:2113476
本文鏈接:http://sikaile.net/yixuelunwen/dongwuyixue/2113476.html