肉牛產(chǎn)肉量預(yù)測(cè)裝置中位置姿態(tài)測(cè)量模塊的研究與實(shí)現(xiàn)
發(fā)布時(shí)間:2018-07-01 19:22
本文選題:預(yù)測(cè)裝置 + 位置姿態(tài)測(cè)量; 參考:《西北農(nóng)林科技大學(xué)》2015年碩士論文
【摘要】:本文旨在研發(fā)肉牛產(chǎn)肉量活體預(yù)測(cè)裝置中的位置姿態(tài)測(cè)量模塊,測(cè)定預(yù)測(cè)裝置的位置與姿態(tài),為構(gòu)造牛體三維模型、進(jìn)而預(yù)測(cè)活牛產(chǎn)肉量做準(zhǔn)備。該模塊依據(jù)慣性導(dǎo)航原理,采用ZigBee無(wú)線傳輸技術(shù),通過(guò)采集的加速度和角速度數(shù)據(jù)計(jì)算預(yù)測(cè)裝置的位置與姿態(tài),主要工作如下:(1)設(shè)計(jì)實(shí)現(xiàn)位置姿態(tài)測(cè)量模塊。依據(jù)肉牛產(chǎn)肉量預(yù)測(cè)裝置的實(shí)際需求,從方便使用、低成本出發(fā)進(jìn)行模塊設(shè)計(jì),采用MEMS加速度計(jì)和陀螺及ZigBee模塊等構(gòu)建該模塊。ZigBee模塊選用CC2530控制加速度計(jì)和陀螺進(jìn)行數(shù)據(jù)的采集,并完成數(shù)據(jù)的無(wú)線收發(fā),將數(shù)據(jù)傳送到PC機(jī)上進(jìn)行處理。(2)建立加速度計(jì)和陀螺的誤差模型。分析加速度計(jì)和陀螺的誤差成分,構(gòu)建以零偏、刻度因子、交叉耦合項(xiàng)和隨機(jī)誤差為主的、含有24個(gè)待定參數(shù)的加速度計(jì)誤差模型和陀螺誤差模型。分別使用12位置法和角位置法,對(duì)加速度計(jì)誤差模型和陀螺誤差模型中的參數(shù)進(jìn)行標(biāo)定,導(dǎo)出誤差模型中的待定參數(shù),得到誤差模型的數(shù)學(xué)表達(dá)式。采用Kalman濾波算法對(duì)隨機(jī)誤差進(jìn)行處理,降低加速度計(jì)和陀螺的隨機(jī)誤差。實(shí)驗(yàn)表明,加速度計(jì)的測(cè)量誤差方差相對(duì)于使用誤差模型前的降低了84.78%;陀螺的測(cè)量誤差相對(duì)于使用誤差模型前的降低了88.25%。(3)解算載體的姿態(tài)和位置。根據(jù)采集到的加速度和角速度,采用四元數(shù)法先對(duì)姿態(tài)進(jìn)行解算。使用四階龍格庫(kù)塔算法對(duì)四元數(shù)進(jìn)行更新,以解算出的姿態(tài)信息為測(cè)量值,以采集的加速度數(shù)據(jù)為觀測(cè)值,使用UKF濾波算法進(jìn)行數(shù)據(jù)融合,降低姿態(tài)解算過(guò)程中由陀螺漂移引起的誤差,300秒靜態(tài)姿態(tài)解算偏差在-0.2o~+0.2o以內(nèi),動(dòng)態(tài)姿態(tài)解算偏差在-2o~+2o以內(nèi)。推導(dǎo)位置姿態(tài)測(cè)量模塊適用的比力方程,導(dǎo)出速度和位置的解算公式,位置解算長(zhǎng)度為1m時(shí),X軸最大誤差為0.0216m,Y軸最大誤差為0.0959m,Z軸最大誤差為-0.0289m。
[Abstract]:The purpose of this paper is to develop the position and attitude measurement module of the live prediction device for beef meat production, to determine the position and attitude of the prediction device, and to prepare for the construction of the three-dimensional model of cattle body and the prediction of live cattle meat production. According to the inertial navigation principle, ZigBee wireless transmission technology is used to calculate and predict the position and attitude of the device through the collected acceleration and angular velocity data. The main work is as follows: (1) Design and implement the position attitude measurement module. According to the actual demand of the meat quantity prediction device of beef cattle, the module is designed for convenience and low cost. The MEMS accelerometer, gyroscope and ZigBee module are used to construct the module. CC2530 control accelerometer and gyroscope are used to collect the data. The data is transferred to PC for processing. (2) the error model of accelerometer and gyroscope is established. The error components of accelerometers and gyroscopes are analyzed, and the error models of accelerometers and gyroscopes with 24 undetermined parameters are constructed, which are dominated by zero bias, scale factors, cross-coupling terms and random errors. The parameters of the accelerometer error model and the gyro error model are calibrated using the 12-position method and the angular position method respectively. The undetermined parameters in the error model are derived and the mathematical expressions of the error model are obtained. The Kalman filtering algorithm is used to deal with random errors to reduce the random errors of accelerometers and gyroscopes. The experimental results show that the error variance of accelerometer is 84.78 less than that before using the error model, and the measurement error of gyroscope is 88.25 lower than that before using error model. (3) the attitude and position of carrier are calculated. According to the collected acceleration and angular velocity, the quaternion method is used to calculate the attitude. The fourth order Runge-Kutta algorithm is used to update the quaternion. The attitude information is used as the measured value, the acceleration data is taken as the observation value, and the UKF filtering algorithm is used for data fusion. The error caused by gyroscope drift is reduced in the course of attitude calculation. The error of static attitude solution is within -0.2o- 0.2o, and the error of dynamic attitude solution is within -2o2o. The formula of velocity and position is derived. The maximum error of X axis is 0.0216mY axis when the length of position solution is 1 m, and the maximum error of Z axis is 0.0959mU Z axis is -0.0289mm.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:S823;S818.9
【參考文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 張秋陽(yáng);無(wú)人機(jī)姿態(tài)測(cè)算及其誤差補(bǔ)償研究[D];中南大學(xué);2011年
,本文編號(hào):2088883
本文鏈接:http://sikaile.net/yixuelunwen/dongwuyixue/2088883.html
最近更新
教材專著