β腎上腺素能受體活化蛋白激酶C_ε誘導心肌細胞肥大及其機制探討
[Abstract]:BACKGROUND: Myocardial hypertrophy is a common pathological change in many cardiovascular diseases, such as hypertension, coronary heart disease, valvular disease and congenital heart disease. It is a pathological compensatory process of myocardial cells to a variety of adverse stimuli. These signals alone or together activate multiple signal transduction pathways that ultimately contribute to and/or increase myocardial hypertrophy. To clarify the etiology and pathogenesis of myocardial hypertrophy is of great significance for improving prevention and treatment methods, developing effective drugs and reducing mortality and disability. The study of signal transduction mechanism of cardiac hypertrophy has become a hot spot in recent years. Adrenergic signal transduction pathways in the heart include alpha-adrenergic receptor (alpha-AR) and beta-adrenergic receptor (beta-AR). When alpha-AR and beta-AR are activated, phospholipase C (PLC)/protein kinase C (PKC) and adenylate cyclase/protein excitation, respectively. Activation of the enzyme A (PKA) signaling pathway. Cardiac adrenergic signaling pathway plays an important role in myocardial hypertrophy in vitro and in vivo in transgenic mice.
Since Ahlquist et al classified adrenergic receptors into alpha-AR and beta-AR in 1948, it has been thought that the PKC signal transduction pathway is mediated by alpha-AR. However, studies by Schmidt et al have shown that cyclic adenosine monophosphate (cAMP) can activate a recently discovered guanine-exchange factor: the exchange protein (Epac) directly activated by cAMP, thereby activating PLCs and PKC, suggesting that beta-AR signal transduction pathway is mediated by alpha-AR. There may also be signal transduction pathways mediated by Epac and PLC between PKC.
AIM: To investigate whether isoproterenol (Iso), a pAR agonist, activates PKCs after stimulation of cardiomyocytes and elucidate its mechanism.
METHODS: The primary cultured Wistar neonatal rat cardiomyocytes were treated with beta-AR agonist Iso (lUMol/L, lmin~30min), Epac agonist 8-CPT (lUMol/L, 1Omin) and phospholipase C inhibitor U73122 (2UMO/L, 30min), respectively. The cells were treated with mutant Epac (Epac R279K, Epac inhibitor) carrying dominant inhibitory effect (DN) respectively. Adenovirus, adenovirus encoding cAMP-dependent protein kinase inhibitor (Ad.PKI) and adenovirus labelled green fluorescent protein (GFP) were used to infect cardiomyocytes. Iso (l_ micromol/L, lmin) was used to treat the infected cells. The PKCs protein in the granular part of cardiomyocytes was semi-quantitatively detected by Western blot and observed by confocal laser microscopy. To investigate the translocation of PKCs in cardiomyocytes, the myocardial cells were transfected with specific PKCs epsilon inhibitor peptide (PKC epsilon inhibitor peptide) and negative control peptide (PKC epsilon scramble peptide). The surface area and protein content of cardiomyocytes were measured 48 hours after incubation with Iso (10 micromol/L), and the phosphorylated ERK1/2 (pERK1/2) eggs were treated with Iso (1 micromol/L, 1 Omin). The changes of white expression were analyzed with SPSS11.0 statistical software, and the difference was statistically significant with P 0.05.
RESULTS: Activation and translocation of PKCs were induced by stimulation of pAR. Some PKCs in myocardial granules began to increase after incubation with Iso for 1 minute, and returned to baseline level at 30 minutes. Activation and translocation of PKCs were observed in myocardial cells around the nuclear membrane, which was evident at 1 to 15 minutes after incubation with Iso. 2. Incubation with Iso (lUMol/L, lmin) and Epac agonist 8-CPT was fine. Both Iso and 8-CPT induced PKC epsilon translocation around the nucleus, and the perinuclear staining scores of PKCs in both groups were higher than those in the control group (P 0.05). 3. After adenovirus Ad. PKI was used to infect cardiomyocytes in advance, the increase of PKC epsilon induced by Iso was not inhibited (P 0.01). Quantitative observation of Ad.PKI also failed to inhibit PKC epsilon turnover induced by Iso (P 0.01). 4. Cardiac myocytes were infected with adenovirus encoding Epac R279K and treated with Iso after inhibiting or blocking the effect of Epac. Partial PKC epsilon of cell granules did not increase and PKC epsilon activation induced by Iso was blocked. After pre-incubation, the activation and translocation of PKCs induced by Iso stimulation disappeared, the partial PKC epsilon did not increase (P 0.05), and PKC epsilon did not occur._PKC epsilon activation induced by Iso could increase the expression of pERK1/2 and induce cardiomyocyte hypertrophy.After transfected with PKCs inhibitory peptide and negative control peptide respectively, the myocardial cells were treated with Iso (lmicromol/L, 1O control peptide). Iso increased the expression of pERK1/2 in negative control peptide group (P 0.05): Iso did not increase the expression of pERK1/2 in PKC epsilon inhibitory peptide group (P 0.05), suggesting that the increase of pERKl/2 expression induced by Iso was inhibited after inhibiting the activation of PKC epsilon. In addition, the surface area and protein content of myocardial cells in control group and Iso group were 1319.79, 1874.36 6550 The area was 1268.78 [501.63] micron 2 and 1604.85 [489.88] micron 2, respectively, and the protein content was 0.73 [0.12] and 0.62 [0.07], respectively (P 0.05), suggesting that PKC epsilon inhibitory peptide blocked Iso-induced cardiomyocyte hypertrophy.
CONCLUSION: The activation and translocation of PKC epsilon induced by stimulation of beta-AR in cardiomyocytes suggest that there may be interaction between pAR and PKC epsilon in cardiomyocytes. The activation and translocation of PKC epsilon induced by stimulation of beta-AR may not depend on PKA. Activated EpaC activates PLC and thus mediates PKC epsilon activation and translocation to the perinucleus. Increased expression of pERK1/2 and cardiomyocyte hypertrophy are one of the adverse effects of Iso-activated PKC epsilon signal transduction pathway. Activated PKC epsilon by beta-AR may activate ERK signal transduction pathway and may be involved in inducing cardiomyocyte hypertrophy.
【學位授予單位】:昆明醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2011
【分類號】:R363
【共引文獻】
相關期刊論文 前10條
1 楊新;;自擬桑葶湯對擴張型心肌病患者生活質量和運動耐量的影響[J];中醫(yī)藥臨床雜志;2010年03期
2 張茂根;;溫陽通絡活血方藥治療慢性心力衰竭臨床觀察[J];中醫(yī)藥臨床雜志;2010年04期
3 王銀燕;戴小華;;參附注射液治療慢性心力衰竭臨床觀察[J];中醫(yī)藥臨床雜志;2012年01期
4 呂留強;祖秋菊;唐揚章;;心臟再同步化治療8例充血性心力衰竭的療效觀察[J];安徽醫(yī)學;2010年03期
5 李玉英;;急性心力衰竭的診治[J];安徽醫(yī)學;2011年08期
6 張以政;王治;;血尿酸水平與慢性充血性心力衰竭患者心功能的相關性研究[J];安徽醫(yī)學;2011年10期
7 程立順;;利鈉肽與心血管疾病的診斷與治療[J];安徽醫(yī)藥;2009年07期
8 張先林;張恒;蔡鑫;包宗明;王洪巨;馬賓;宋偉;王鳳超;;無癥狀性心功能不全患者血漿腦利鈉肽的臨床研究[J];蚌埠醫(yī)學院學報;2010年02期
9 劉廷容;唐金國;;芪藶強心膠囊佐治慢性心力衰竭療效觀察[J];蚌埠醫(yī)學院學報;2010年12期
10 臧乃諒;;慢性心力衰竭并發(fā)心律失常68例臨床分析[J];青島大學醫(yī)學院學報;2008年05期
相關會議論文 前10條
1 姚鴻梅;黃寶濤;景顯超;黃鶴;;超聲心動圖診斷肺部疾病還是左心衰的臨床價值[A];2011'中國西部聲學學術交流會論文集[C];2011年
2 李平;謝少玲;劉永剛;;處方點評的實踐與體會[A];2011年中國藥學大會暨第11屆中國藥師周論文集[C];2011年
3 宋慶橋;;缺血性心力衰竭陽虛患者臨床特征初探[A];2011年中華中醫(yī)藥學會心病分會學術年會暨北京中醫(yī)藥學會心血管病專業(yè)委員會年會論文集[C];2011年
4 詹文鋒;黃俊;陳純波;曾文新;孫誠;葉珩;詹偉鋒;江穩(wěn)強;;N-端腦利鈉肽前體在重癥患者充血性心力衰竭中的診斷價值[A];2011·中國醫(yī)師協(xié)會中西醫(yī)結合醫(yī)師大會論文集[C];2011年
5 劉春香;毛靜遠;王賢良;侯雅竹;張川;;芪藶強心膠囊治療慢性心力衰竭的系統(tǒng)評價[A];中華中醫(yī)藥學會心病分會第十一屆學術年會論文精選[C];2009年
6 韓強;楊榮榮;;以治療指南為依據(jù)對慢性心力衰竭患者個體化給藥方案設計實踐[A];2013年中國臨床藥學學術年會暨第九屆臨床藥師論壇論文集[C];2013年
7 張詩吟;陳建昌;洪小蘇;徐衛(wèi)亭;黃婧娟;;芪藶強心膠囊對兔心肌梗死后心力衰竭血流動力學的影響[A];首屆中西醫(yī)血管病學大會論文匯編[C];2013年
8 王立新;趙宇;李富軍;何曉雷;王建斌;;芪藶強心膠囊治療難治性心力衰竭的臨床觀察[A];首屆中西醫(yī)血管病學大會論文匯編[C];2013年
9 張麗蕊;陳進玲;;芪藶強心膠囊聯(lián)合益心舒治療冠心病心力衰竭的效果觀察[A];首屆中西醫(yī)血管病學大會論文匯編[C];2013年
10 鄭立文;劉晨;;芪藶強心膠囊對老年慢性心力衰竭患者心功能和NT-proBNP的影響[A];首屆中西醫(yī)血管病學大會論文匯編[C];2013年
相關博士學位論文 前10條
1 李旭光;細胞色素P450表氧化酶基因2J2抑制心肌肥厚的作用及其機制[D];華中科技大學;2011年
2 逯金金;慢性心衰中西醫(yī)結合生存質量量表的研究及應用[D];北京中醫(yī)藥大學;2011年
3 張鵬;冠心病慢性心力衰竭常見證候、證候要素分布規(guī)律的研究[D];北京中醫(yī)藥大學;2011年
4 顏旭;超微強心安神湯治療慢性心衰氣陰兩虧證的臨床療效與機理探討[D];湖南中醫(yī)藥大學;2011年
5 張穩(wěn);基于RAA系統(tǒng)探討復方鉤藤降壓寧片對2K1C-RHR作用效果的實驗及臨床研究[D];湖南中醫(yī)藥大學;2011年
6 汪志剛;煙堿受體激動劑和拮抗劑對Aβ蛋白誘導神經(jīng)細胞損傷的影響及機制研究[D];暨南大學;2011年
7 王曉梅;心力衰竭患者心臟收縮同步性研究[D];天津醫(yī)科大學;2010年
8 樊訊;《傷寒論》溫陽三方干預心梗后心衰心陽虛證候大鼠心室重構的比較研究[D];湖北中醫(yī)藥大學;2011年
9 周炳元;超聲心動圖多參數(shù)記分(EMPS)評估左心室整體功能的可行性及其預后價值[D];蘇州大學;2011年
10 李巖;益氣藥對慢性心力衰竭心氣虛證模型大鼠心肌能量代謝重構的干預作用[D];北京中醫(yī)藥大學;2012年
相關碩士學位論文 前10條
1 范莉;實時三維超聲心動圖和多普勒超聲評價心室收縮同步性[D];南京醫(yī)科大學;2009年
2 董紅科;芪藶強心對阿霉素致擴心病大鼠心臟結構功能及分子機制的影響[D];南京醫(yī)科大學;2010年
3 楊培靈;不同血運重建方式介入治療冠狀動脈多支病變的臨床研究[D];鄭州大學;2010年
4 陳坡;螺內酯對心力衰竭大鼠心功能及血漿TGF-β-1、BNP、TNF-α的影響[D];鄭州大學;2010年
5 洪燁晶;慢性心力衰竭常見中醫(yī)證型與尿酸及左室重量指數(shù)的相關性研究[D];黑龍江中醫(yī)藥大學;2010年
6 王芳;慢性心力衰竭患者血清MMP-9.hs-CRP及UA.Lp(a)檢測的臨床應用[D];山西醫(yī)科大學;2011年
7 程守全;氨基末端腦鈉肽前體和高敏C反應蛋白與冠狀動脈病變程度的相關性研究[D];山西醫(yī)科大學;2011年
8 張曉麗;實時三維超聲心動圖評價擴張型心肌病患者左心室收縮不同步性[D];山西醫(yī)科大學;2011年
9 辛雨;慢性冠心病心衰中西醫(yī)藥物治療的新進展[D];北京中醫(yī)藥大學;2011年
10 李莉;151例慢性心力衰竭血瘀證患者的證、治相關因素的回顧性分析[D];北京中醫(yī)藥大學;2011年
,本文編號:2249146
本文鏈接:http://sikaile.net/xiyixuelunwen/2249146.html